To evaluate the clinical performance of noninvasive prenatal screening (NIPS) for fetal sex chromosome aneuploidies (SCAs), pregnant women were recruited in this retrospective observational study. The NIPS test was undertaken using high-throughput gene sequencing. In total,50,301 pregnant women were analysed for demographic characteristics and medical history. Of them, 308 women (0.61%) had high risk for fetal SCAs, including 138 for 45,X, 111 for 47,XXY, 42 for 47,XXX, and 17 for 47,XYY. After the pre-test counselling, 182 participants chose to undergo invasive prenatal diagnosis, confirming 59 positive cases. The combined positive predictive value of NIPS was 32.42% (59/182), 18.39% (16/87), 44.4% (12/27), 39.29% (22/56), and 75% (9/12) for detecting SCAs, 45,X, 47,XXX, 47,XXY, and 47,XYY, respectively. NIPS can be a useful method to detect the fetal SCAs using high-throughput gene sequencing, though accuracy can still be improved, especially for 45,X. Although the value of NIPS compare favorably with those seen in traditional screening approaches for SCAs, it is important to highlight the limitations of NIPS while educating clinicians and patients.
A paradigm shift in noninvasive prenatal screening has been made with the discovery of cell-free fetal DNA in maternal plasma. Noninvasive prenatal screening is primarily used to screen for fetal aneuploidies, and has been used globally. Fetal fraction, an important parameter in the analysis of noninvasive prenatal screening results, is the proportion of fetal cell-free DNA present in the total maternal plasma cell-free DNA. It combines biological factors and bioinformatics algorithms to interpret noninvasive prenatal screening results and is an integral part of quality control. Maternal and fetal factors may influence fetal fraction. To date, there is no broad consensus on the factors that affect fetal fraction. There are many different approaches to evaluate this parameter, each with its advantages and disadvantages. Different fetal fraction calculation methods may be used in different testing platforms or laboratories. This review includes numerous publications that focused on the understanding of the significance, influencing factors, and interpretation of fetal fraction to provide a deeper understanding of this parameter.
As the material transportation system of the human body, the vascular network carries the transportation of materials and nutrients. Currently, the construction of functional microvascular networks is an urgent requirement for the development of regenerative medicine and in vitro drug screening systems. How to construct organs with functional blood vessels is the focus and challenge of tissue engineering research. Here in this review article, we first introduced the basic characteristics of blood vessels in the body and the mechanism of angiogenesis in vivo, summarized the current methods of constructing tissue blood vessels in vitro and in vivo, and focused on comparing the functions, applications and advantages of constructing different types of vascular chips to generate blood vessels. Finally, the challenges and opportunities faced by the development of this field were discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.