High-throughput sequencing of sedimentary DNA (sed-DNA) was utilized to reconstruct the temporal dynamics of microbial eukaryotic communities (MECs) at a centennial scale in two re-oligotrophicated lakes that were exposed to different levels of phosphorus enrichment. The temporal changes within the MECs were expressed in terms of richness, composition and community structure to investigate their relationships with two key forcing factors (i.e., nutrient enrichment and climate warming). Various groups, including Apicomplexa, Cercozoa, Chrysophyceae, Ciliophora, Chlorophyceae and Dinophyceae, responded to phosphorus enrichment levels with either positive or negative impacts on their richness and relative abundance. For both lakes, statistical modelling demonstrated that phosphorus concentration ([P]) was a dominant contributor to MECs modifications before the 1980s; after the mid-80s, the contribution of air temperature changes increased and potentially surpassed the contribution of [P]. Co-occurrence network analysis revealed that some clusters of taxa (i.e., modules) composed mainly of Dinophyceae and unclassified Alveolata were strongly correlated to air temperature in both lakes. Overall, our data showed that sed-DNA constitutes a precious archive of information on past biodiversity changes, allowing the study of the dynamics of numerous eukaryotic groups that were not traditionally considered in paleo-reconstructions.
Lakes are essential ecosystems that provide a large number of ecosystem services whose quality is strongly impacted by human pressures. Optimal uses of lakes require adapted management practices which in turn rely on physico-chemical and biological monitoring. Long-term ecological monitoring provides large sets of environmental data. When such data are available, they have to be associated to metadata and to be stored properly to be accessible and useable by the scientific community. We present a data informatics system accessible to anyone who requests it. Maintained online since 2014 (https://si-ola.inrae.fr), it is originated from the Observatory on LAkes (OLA). It contains long-term data from 4 peri-alpine lakes (Lakes Aiguebelette, Annecy, Bourget, Geneva/Léman) and 24 high-altitude lakes of the northern French Alps. We describe the generated long-term data series, the data type, the methodologies and quality control procedures, and the information system where data are made accessible. Data use is allowed under the condition of providing reference to the original source. We show here how such a platform clearly enhances data sharing and scientific collaboration. Various studies referring to these data are regularly published in peer-reviewed journals; providing in fine a better understanding of lakes’ ecosystems functioning under local and global pressures.
In this study, we evaluated the driving forces exerted by a large set of environmental and biological parameters on the spatial and temporal dynamics of archaeal community structure in two neighbouring peri-alpine lakes that differ in terms of trophic status. We analysed monthly data from a 2-year sampling period at two depths corresponding to the epi- and hypolimnetic layers. The archaeal communities seemed to be mainly composed of ammonia-oxidizing archaea belonging to the thaumarchaeotal phylum. The spatio-temporal dynamics of these communities were very similar in the two lakes and were characterized by (1) disparities in archaeal community structure in both time and space and (2) no seasonal reproducibility between years. The archaeal communities were regulated by a complex combination of abiotic factors, including temperature, nutrients, chlorophyll a and dissolved oxygen, and biotic factors such as heterotrophic nanoflagellates and ciliates. However, in most cases, these factors explained < 52% of the variance in archaeal community structure, while we showed in a previous study that these factors explained 70-90% of the temporal variance for bacteria. This suggests that Bacteria and Archaea may be influenced by different factors and could occupy different ecological niches despite similar spatio-temporal dynamics.
1. Decennial changes in Planktothrix rubescens diversity and dynamics were reconstructed by applying molecular tools to analyse DNA and RNA extracted from lake sediments. The sediments studied were sampled from a deep peri-alpine lake that has experienced both dramatic shifts in trophic conditions and large-scale climatic changes. Palaeolimnological proxies were combined with statistical modelling to investigate the relative influence of phosphorus concentrations and temperature changes on the extent of Planktothrix blooms over the last century. 2. Phylogenetic analysis revealed that the overall composition of the cyanobacterial community changed over the transition from oligotrophic to eutrophic conditions. When the relative abundance of Planktothrix decreased in the 1970s, concomitant with eutrophication, total cyanobacterial abundance remained high and more Anabaena and Microcystis sequences were detected. In spite of such drastic environmental changes, the lake provided a constant niche for one particular Planktothrix species, which was consistently present from the 1920s to the present day. 3. Phosphorus concentration was found to be the dominant driver of the relative abundance of P. rubescens, with the highest abundances observed during mesotrophic conditions. The relative role of climate was nutrient-dependent, with warmer springs having a positive effect on P. rubescens abundance only during mesotrophic periods. 4. Overall, this study confirms that analysis of genetic signatures preserved in sediment archives allows assessment of key palaeoenvironmental indicator species that have no diagnostic microscopic cellular features in the sediment record. In the case of cyanobacteria, palaeogenetics offer unique opportunities to anticipate how future climate change might affect the response of P. rubescens to phosphorus concentration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.