Today, there is growing interest in the potential epigenetic risk related to assisted reproductive technologies (ART). Much evidence in the literature supports the hypothesis that adverse pregnancy outcomes linked to ART are associated with abnormal trophoblastic invasion. The aim of this review is to investigate the relationship between epigenetic dysregulation caused by ART and subsequent placental response. The dialogue between the endometrium and the embryo is a crucial step to achieve successful trophoblastic invasion, thus ensuring a non-complicated pregnancy and healthy offspring. However, as described in this review, ART could impair both actors involved in this dialogue. First, ART may induce epigenetic defects in the conceptus by modifying the embryo environment. Second, as a result of hormone treatments, ART may impair endometrial receptivity. In some cases, it results in embryonic growth arrest but, when the development of the embryo continues, the placenta could bring adaptive responses throughout pregnancy. Amongst the different mechanisms, epigenetics, especially thanks to a finely tuned network of imprinted genes stimulated by foetal signals, may modify nutrient transfer, placental growth and vascularization. If these coping mechanisms are overwhelmed, improper maternal-foetal exchanges occur, potentially leading to adverse pregnancy outcomes such as abortion, preeclampsia or intra-uterine growth restriction. But in most cases, successful placental adaptation enables normal progress of the pregnancy. Nevertheless, the risks induced by these modifications during pregnancy are not fully understood. Metabolic diseases later in life could be exacerbated through the memory of epigenetic adaptation mechanisms established during pregnancy. Thus, more research is still needed to better understand abnormal interactions between the embryo and the milieu in artificial conditions. As trophectoderm cells are in direct contact with the environment, they deserve to be studied in more detail. The ultimate goal of these studies will be to render ART protocols safer. Optimization of the environment will be the key to improving the dialogue between the endometrium and embryo, so as to ensure that placentation after ART is similar to that following natural conception.
The study was funded by a grant from Besançon and Dijon University Hospitals. The authors have no conflicts of interest to declare.
STUDY QUESTION Can time-lapse imaging systems make it possible to identify novel early non-invasive biomarkers to predict live birth? SUMMARY ANSWER From mostly high-grade embryos, out of 35 morphometric, morphologic and morphokinetic variables, only pronuclei (PN) position at time of PN juxtaposition and the absence of multinucleated blastomeres at the 2-cell stage (MNB2cell), were potentially associated with live birth. WHAT IS KNOWN ALREADY Previous studies indicate that some kinetic markers may be predictive of blastocyst development and embryonic implantation. Certain teams have suggested including some of them in decisional algorithms for embryo transfers. STUDY DESIGN, SIZE, DURATION Using a time-lapse incubator (EmbryoScope, Unisense FertiliTech), we retrospectively explored the associations between the morphometric, morphologic and morphokinetic parameters of oocytes, zygotes and embryos, and their associations with live birth. This study assessed 232 embryos from single embryo transfers after ICSI cycles performed between January 2014 and December 2017. PARTICIPANTS/MATERIALS, SETTING, METHODS The morphometric, morphologic and morphokinetic parameters (18, 4 and 13, respectively) of oocytes, zygotes and early embryos were studied retrospectively. The associations between these parameters were examined using a Spearman’s correlation, Mann–Whitney or chi-squared test as appropriate. We examined whether these parameters were associated with outcomes in univariate and multivariate logistic regression analyses. MAIN RESULTS AND THE ROLE OF CHANCE Central PN juxtaposition was associated with a 2-fold increase in the odds of live birth (OR = 2.20; 95% CI, [1.26–3.89]; P = 0.006), while the presence of MNB2cell was associated with half the odds of live birth (OR = 0.51; 95% CI, [0.27–0.95]; P = 0.035). These two parameters were independent of embryo kinetics. The 33 remaining parameters had no significant association with the capacity of transferred embryos to develop to term. LIMITATIONS, REASONS FOR CAUTION Even though the population size was relatively small, our analyses were based on homogeneous cycles, i.e. young women whose transferred embryos were found to be high-grade according to conventional morphology evaluation. In addition, our conclusions were established from a specific, highly selected population, so other study populations, such as women in an older age bracket, may yield different results. Finally, because we assessed day 2/3 transfers, our findings cannot be generalized to embryos cultured up to the blastocyst stage. WIDER IMPLICATIONS OF THE FINDINGS It would be interesting to explore, prospectively, whether PN localisation is a relevant measure to predict embryo development when added into further algorithms and whether this parameter could be suitable for use in other IVF clinics. Further studies are needed, notably to explore the added value of timing evaluation in cohorts of embryos with low or intermediate morphology grade, as well as in other maternal populations (i.e. older women). STUDY FUNDING/COMPETING INTEREST(S) No external funding was used for this study. P. Sagot received funding from the following commercial companies: Merck Serono, Finox Biotech, Ferring, MSD France SAS, Teva Sante ́ SAS, Allergan France, Gedeon Richter France, Effik S.A., Karl Storz Endoscopie France, GE Medical Systems SCS, Laboratoires Genevrier, H.A.C. Pharma and Ipsen. All the authors confirm that none of this funding was used to support the research in this study. There are no patents, products in development or marketed products to declare. This does not alter the authors’ adherence to all the journal policies on sharing data and materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.