Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60–260 μm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 μm/s), though reaching up to 7 μm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20–30 μm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS. Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.
Flow of cerebrospinal fluid (CSF) in perivascular spaces (PVS) is one of the key concepts involved in theories concerning clearance from the brain. Experimental studies have demonstrated both net and oscillatory movement of microspheres in PVS (Mestre et al. (2018), Bedussi et al. (2018)). The oscillatory particle movement has a clear cardiac component, while the mechanisms involved in net movement remain disputed. Using computational fluid dynamics, we computed the CSF velocity and pressure in a PVS surrounding a cerebral artery subject to different forces, representing arterial wall expansion, systemic CSF pressure changes and rigid motions of the artery. The arterial wall expansion generated velocity amplitudes of 60-260 µm/s, which is in the upper range of previously observed values. In the absence of a static pressure gradient, predicted net flow velocities were small (<0.5 µm/s), though reaching up to 7 µm/s for non-physiological PVS lengths. In realistic geometries, a static systemic pressure increase of physiologically plausible magnitude was sufficient to induce net flow velocities of 20-30 µm/s. Moreover, rigid motions of the artery added to the complexity of flow patterns in the PVS.Our study demonstrates that the combination of arterial wall expansion, rigid motions and a static CSF pressure gradient generates net and oscillatory PVS flow, quantitatively comparable with experimental findings. The static CSF pressure gradient required for net flow is small, suggesting that its origin is yet to be determined.
Mixed dimensional partial differential equations (PDEs) are equations coupling unknown fields defined over domains of differing topological dimension. Such equations naturally arise in a wide range of scientific fields including geology, physiology, biology, and fracture mechanics. Mixed dimensional PDEs are also commonly encountered when imposing non-standard conditions over a subspace of lower dimension, e.g., through a Lagrange multiplier. In this article, we present general abstractions and algorithms for finite element discretizations of mixed domain and mixed dimensional PDEs of codimension up to one (i.e., n D- m D with |n-m| ≤ 1). We introduce high-level mathematical software abstractions together with lower-level algorithms for expressing and efficiently solving such coupled systems. The concepts introduced here have also been implemented in the context of the FEniCS finite element software. We illustrate the new features through a range of examples, including a constrained Poisson problem, a set of Stokes-type flow models, and a model for ionic electrodiffusion.
This chapter presents the KNP-EMI model describing ion concentrations and electrodiffusion in excitable tissue. The KNP-EMI model extends on the EMI model by removing the assumption that ion concentrations are constant in time and space, and may as such be more appropriate in connection with modelling e.g. spreading depression, stroke and epilepsy. The KNP-EMI model defines a system of time-dependent, nonlinear, mixed dimensional partial differential equations. We here detail the derivation of the system and present a numerical example illustrating how ion concentrations evolve during neuronal activity.
Flow of cerebrospinal fluid in perivascular spaces is a key mechanism underlying brain transport and clearance. In this paper, we present a mathematical and numerical formalism for reduced models of pulsatile viscous fluid flow in networks of generalized annular cylinders. We apply this framework to study cerebrospinal fluid flow in perivascular spaces induced by pressure differences, cardiac pulse wave-induced vascular wall motion and vasomotion. The reduced models provide approximations of the cross-section average pressure and cross-section flux, both defined over the topologically one-dimensional centerlines of the network geometry. Comparing the full and reduced model predictions, we find that the reduced models capture pulsatile flow characteristics and provide accurate pressure and flux predictions across the range of idealized and image-based scenarios investigated—at a fraction of the computational cost of the corresponding full models. The framework presented thus provides a robust and effective computational approach for large scale in-silico studies of pulsatile perivascular fluid flow and transport.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.