Key Results 1. Of the 73 patients who presented neurological symptoms, 43 had pathological MRI findings (58.9%), including 17 with acute ischemic infarcts (23.3%), 1 with a deep venous thrombosis (1.4%), 8 with multiple microhemorrhages (11.3%), 22 with perfusion abnormalities (47.7%), 3 with restricted diffusion foci within the corpus callosum consistent with cytotoxic lesions of the corpus callosum (CLOCC, 4.1%). 2. Imaging patterns possibly related to COVID-19 were observed in patients in intensive care and included multifocal white matter enhancing lesions seen (4 patients, 5%) and basal ganglia abnormalities (4 patients, 5%). Summary Statement MRI abnormalities included cerebrovascular lesions, perfusion abnormalities, cytotoxic lesions of the corpus callosum, ICU-related complications, white matter enhancing lesions and basal ganglia abnormalities.
Aim The aim of this paper is to describe the clinical features of COVID‐19‐related encephalopathy and their metabolic correlates using brain 2‐desoxy‐2‐fluoro‐D‐glucose (FDG)‐positron‐emission tomography (PET)/computed tomography (CT) imaging. Background and purpose A variety of neurological manifestations have been reported in association with COVID‐19. COVID‐19‐related encephalopathy has seldom been reported and studied. Methods We report four cases of COVID‐19‐related encephalopathy. The diagnosis was made in patients with confirmed COVID‐19 who presented with new‐onset cognitive disturbances, central focal neurological signs, or seizures. All patients underwent cognitive screening, brain magnetic resonance imaging (MRI), lumbar puncture, and brain 2‐desoxy‐2‐fluoro‐D‐glucose (FDG)‐positron‐emission tomography (PET)/computed tomography (CT) (FDG‐PET/CT). Results The four patients were aged 60 years or older, and presented with various degrees of cognitive impairment, with predominant frontal lobe impairment. Two patients presented with cerebellar syndrome, one patient had myoclonus, one had psychiatric manifestations, and one had status epilepticus. The delay between first COVID‐19 symptoms and onset of neurological symptoms was between 0 and 12 days. None of the patients had MRI features of encephalitis nor significant cerebrospinal fluid (CSF) abnormalities. SARS‐CoV‐2 RT‐PCR in the CSF was negative for all patients. All patients presented with a consistent brain FDG‐PET/CT pattern of abnormalities, namely frontal hypometabolism and cerebellar hypermetabolism. All patients improved after immunotherapy. Conclusions Despite varied clinical presentations, all patients presented with a consistent FDG‐PET pattern, which may reflect an immune mechanism.
Tics are sometimes described as voluntary movements performed in an automatic or habitual way. Here, we addressed the question of balance between goal-directed and habitual behavioural control in Gilles de la Tourette syndrome and formally tested the hypothesis of enhanced habit formation in these patients. To this aim, we administered a three-stage instrumental learning paradigm to 17 unmedicated and 17 antipsychotic-medicated patients with Gilles de la Tourette syndrome and matched controls. In the first stage of the task, participants learned stimulus-response-outcome associations. The subsequent outcome devaluation and 'slip-of-action' tests allowed evaluation of the participants' capacity to flexibly adjust their behaviour to changes in action outcome value. In this task, unmedicated patients relied predominantly on habitual, outcome-insensitive behavioural control. Moreover, in these patients, the engagement in habitual responses correlated with more severe tics. Medicated patients performed at an intermediate level between unmedicated patients and controls. Using diffusion tensor imaging on a subset of patients, we also addressed whether the engagement in habitual responding was related to structural connectivity within cortico-striatal networks. We showed that engagement in habitual behaviour in patients with Gilles de la Tourette syndrome correlated with greater structural connectivity within the right motor cortico-striatal network. In unmedicated patients, stronger structural connectivity of the supplementary motor cortex with the sensorimotor putamen predicted more severe tics. Overall, our results indicate enhanced habit formation in unmedicated patients with Gilles de la Tourette syndrome. Aberrant reinforcement signals to the sensorimotor striatum may be fundamental for the formation of stimulus-response associations and may contribute to the habitual behaviour and tics of this syndrome.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.