During pre-replication complex (pre-RC) formation, origin recognition complex (ORC), Cdc6, and Cdt1 cooperatively load the 6-subunit mini chromosome maintenance (MCM2-7) complex onto DNA. Loading of MCM2-7 is a prerequisite for DNA licensing that restricts DNA replication to once per cell cycle. During S phase MCM2-7 functions as part of the replicative helicase but within the pre-RC MCM2-7 is inactive. The organization of replicative DNA helicases before and after loading onto DNA has been studied in bacteria and viruses but not eukaryotes and is of major importance for understanding the MCM2-7 loading mechanism and replisome assembly. Lack of an efficient reconstituted pre-RC system has hindered the detailed mechanistic and structural analysis of MCM2-7 loading for a long time. We have reconstituted Saccharomyces cerevisiae pre-RC formation with purified proteins and showed efficient loading of MCM2-7 onto origin DNA in vitro. MCM2-7 loading was found to be dependent on the presence of all pre-RC proteins, origin DNA, and ATP hydrolysis. The quaternary structure of MCM2-7 changes during pre-RC formation: MCM2-7 before loading is a single hexamer in solution but is transformed into a double-hexamer during pre-RC formation. Using electron microscopy (EM), we observed that loaded MCM2-7 encircles DNA. The loaded MCM2-7 complex can slide on DNA, and sliding is not directional. Our results provide key insights into mechanisms of pre-RC formation and have important implications for understanding the role of the MCM2-7 in establishment of bidirectional replication forks.helicase ͉ initiation ͉ mini chromosome maintenance ͉ ORC ͉ pre-RC
Efficient duplication of the genome requires the concerted action of helicase and DNA polymerases at replication forks1, to avoid stalling of the replication machinery and consequent genomic instability2-4. In eukaryotes, the physical coupling between helicase and DNA polymerases remains poorly understood. Here we define the molecular mechanism by which the yeast Ctf4 protein links the Cdc45-MCM-GINS (CMG) DNA helicase to DNA polymerase α (Pol α) within the replisome. We use X-ray crystallography and electron microscopy to show that Ctf4 self-associates in a constitutive disk-shaped trimer. Trimerization depends on a β-propeller domain in the carboxy-terminal half of the protein, which is fused to a helical extension that protrudes from one face of the trimeric disk. Critically, Pol α and the CMG helicase share a common mechanism of interaction with Ctf4. We show that the N-terminal tails of the catalytic subunit of Pol α and the Sld5 subunit of GINS contain a conserved Ctf4-binding motif that docks onto the exposed helical extension of a Ctf4 protomer within the trimer. Accordingly, we demonstrate that one Ctf4 trimer can support binding of up to three partner proteins, including the simultaneous association with both Pol α and GINS. Our findings indicate that Ctf4 can couple two molecules of Pol α to one CMG helicase within the replisome, providing a new paradigm for lagging-strand synthesis in eukaryotes that resembles the emerging model for the simpler replisome of E. coli5-8. The ability of Ctf4 to act as a platform for multivalent interactions illustrates a mechanism for the concurrent recruitment of factors that act together at the fork.
DNA unwinding at eukaryotic replication forks displaces parental histones, which must be redeposited onto nascent DNA in order to preserve chromatin structure. By screening systematically for replisome components that pick up histones released from chromatin into a yeast cell extract, we found that the Mcm2 helicase subunit binds histones cooperatively with the FACT (facilitiates chromatin transcription) complex, which helps to re-establish chromatin during transcription. FACT does not associate with the Mcm2-7 helicase at replication origins during G1 phase but is subsequently incorporated into the replisome progression complex independently of histone binding and uniquely among histone chaperones. The amino terminal tail of Mcm2 binds histones via a conserved motif that is dispensable for DNA synthesis per se but helps preserve subtelomeric chromatin, retain the 2 micron minichromosome, and support growth in the absence of Ctf18-RFC. Our data indicate that the eukaryotic replication and transcription machineries use analogous assemblies of multiple chaperones to preserve chromatin integrity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.