The functional roles of the Caudate nucleus (Cd) are well known. Selective Cd lesions can be found in neurological disorders. However, little is known about the dynamics of the behavioral changes during progressive Cd ablation. Current stereotactic radiosurgery technologies allow the progressive ablation of a brain region with limited adverse effects in surrounding normal tissues. This could be of high interest for the study of the modified behavioral functions in relation with the degree of impairment of the brain structures. Using hypofractionated stereotactic radiotherapy combined with synchrotron microbeam radiation, we investigated, during one year after irradiation, the effects of unilateral radio-ablation of the right Cd on the behavior of Yucatan minipigs. The right Cd was irradiated to a minimal dose of 35.5 Gy delivered in three fractions. MRI-based morphological brain integrity and behavioral functions, i.e. locomotion, motivation/hedonism were assessed. We detected a progressive radio-necrosis leading to a quasi-total ablation one year after irradiation, with an additional alteration of surrounding areas. Transitory changes in the motivation/hedonism were firstly detected, then on locomotion, suggesting the influence of different compensatory mechanisms depending on the functions related to Cd and possibly some surrounding areas. We concluded that early behavioral changes related to eating functions are relevant markers for the early detection of ongoing lesions occurring in Cd-related neurological disorders.
The minimum audible angle (MAA), defined as the smallest detectable difference between the azimuths of two identical sources of sound, is a standard measure of spatial auditory acuity in animals. Few studies have explored the MAA of dogs, using methods that do not allow potential improvement throughout the assessment, and with a very small number of dog(s) assessed. To overcome these limits, we adopted a staircase method on 10 dogs, using a two-forced choice procedure with two sound sources, testing angles of separation from 60° to 1°. The staircase method permits the level of difficulty for each dog to be continuously adapted and allows for the observation of improvement over time. The dogs’ average MAA was 7.6°, although with a large interindividual variability, ranging from 1.3° to 13.2°. A global improvement was observed across the procedure, substantiated by a gradual lowering of the MAA and of choice latency across sessions. The results indicate that the staircase method is feasible and reliable in the assessment of auditory spatial localization in dogs, highlighting the importance of using an appropriate method in a sensory discrimination task, so as to allow improvement over time. The results also reveal that the MAA of dogs is more variable than previously reported, potentially reaching values lower than 2°. Although no clear patterns of association emerged between MAA and dogs’ characteristics such as ear shape, head shape or age, the results suggest the value of conducting larger-scale studies to determine whether these or other factors influence sound localization abilities in dogs.
Visually tracking a moving object, even if it becomes temporarily invisible, is an important skill for animals living in complex environments. However, this ability has not been widely explored in dogs. To address this gap of knowledge and understand how experience contributes to such ability, we conducted two experiments using a violation of expectation paradigm. Dogs were shown an animation of a ball moving horizontally across a screen, passing behind an occluder, and reappearing with a timing that was faster, slower or congruent with its initial speed. In the first experiment, dogs (N = 15) were exposed to the incongruent conditions without prior experience; while in the second experiment, dogs (N = 37) were preliminarily exposed to the congruent stimulus. Dogs of the first experiment did not exhibit a surprise effect, as measured by latency to look away from the expected stimulus presentation area, in response to the incongruent conditions, suggesting they had not formed an expectation about the timing of reappearance. However, their latency to orient towards the reappearing ball depended on the condition, suggesting they were able, to some extent, to visually keep track of the stimulus’ trajectory. Dogs of the second experiment were surprised when the ball stayed behind the occluder longer than expected, but showed no difference in latency to orient across conditions. This suggests they had overcome the visual tracking mechanism and had formed expectations about the timing of reappearance. In conclusion, dogs seem to use a low-level mechanism to keep visual track of a temporarily disappearing moving object, but experience is required to make expectation about its trajectory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.