Cortical and hippocampal hypersynchrony of neuronal networks seems to be an early event in Alzheimer’s disease pathogenesis. Many mouse models of the disease also present neuronal network hypersynchrony, as evidenced by higher susceptibility to pharmacologically-induced seizures, electroencephalographic seizures accompanied by spontaneous interictal spikes and expression of markers of chronic seizures such as neuropeptide Y ectopic expression in mossy fibers. This network hypersynchrony is thought to contribute to memory deficits, but whether it precedes the onset of memory deficits or not in mouse models remains unknown. The earliest memory impairments in the Tg2576 mouse model of Alzheimer’s disease have been observed at 3 months of age. We thus assessed network hypersynchrony in Tg2576 and non-transgenic male mice at 1.5, 3 and 6 months of age. As soon as 1.5 months of age, Tg2576 mice presented higher seizure susceptibility to systemic injection of a GABAA receptor antagonist. They also displayed spontaneous interictal spikes on EEG recordings. Some Tg2576 mice presented hippocampal ectopic expression of neuropeptide Y which incidence seems to increase with age among the Tg2576 population. Our data reveal that network hypersynchrony appears very early in Tg2576 mice, before any demonstrated memory impairments.
The pulvinar is a heterogeneous thalamic nucleus, which is well developed in primates. One of its subdivisions, the medial pulvinar, is connected to many cortical areas, including the visual, auditory, and somatosensory cortices, as well as with multisensory areas and premotor areas. However, except for the visual modality, little is known about its sensory functions. A hypothesis is that, as a region of convergence of information from different sensory modalities, the medial pulvinar plays a role in multisensory integration. To test this hypothesis, 2 macaque monkeys were trained to a fixation task and the responses of single-units to visual, auditory, and auditory–visual stimuli were examined. Analysis revealed auditory, visual, and multisensory neurons in the medial pulvinar. It also revealed multisensory integration in this structure, mainly suppressive (the audiovisual response is less than the strongest unisensory response) and subadditive (the audiovisual response is less than the sum of the auditory and the visual responses). These findings suggest that the medial pulvinar is involved in multisensory integration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.