The generation of dopamine (DA) neurons from stem cells holds great promise in the treatment of Parkinson’s disease and other neural disease associated with dysfunction of DA neurons. Mesenchymal stem cells (MSCs) derived from the adult bone marrow show plasticity with regards to generating cells of other germ layers. In addition to reduced ethical concerns, MSCs could be transplanted across allogeneic barriers, making them desirable stem cells for clinical applications. We have reported on the generation of DA cells from human MSCs using sonic hedgehog (SHH), fibroblast growth factor 8 and basic fibroblast growth factor. Despite the secretion of DA, the cells did not show evidence of functional neurons, and were therefore designated DA progenitors. Here, we report on the role of brain‐derived neurotrophic factor (BDNF) in the maturation of the MSC‐derived DA progenitors. 9‐day induced MSCs show significant tropomyosin‐receptor‐kinase B expression, which correlate with its ligand, BDNF, being able to induce functional maturation. The latter was based on Ca2+ imaging analyses and electrophysiology. BDNF‐treated cells showed the following: increases in intracellular Ca2+ upon depolarization and after stimulation with the neurotransmitters acetylcholine and GABA and, post‐synaptic currents by electrophysiological analyses. In addition, BDNF induced increased DA release upon depolarization. Taken together, these results demonstrate the crucial role for BDNF in the functional maturation of MSC‐derived DA progenitors.
The euphoria of stem cell therapy has diminished, allowing scientists, clinicians and the general public to seriously re-examine how and what types of stem cells would effectively repair damaged tissue, prevent further tissue damage and/or replace lost cells. Importantly, there is a growing recognition that there are substantial person-to-person differences in the outcome of stem cell therapy. Even though the small molecule pharmaceuticals have long remained a primary focus of the personalized medicine research, individualized or targeted use of stem cells to suit a particular individual could help forecast potential failures of the therapy or identify, early on, the individuals who might benefit from stem cell interventions. This would however demand collaboration among several specialties such as pharmacology, immunology, genomics and transplantation medicine. Such transdisciplinary work could also inform how best to achieve efficient and predictable stem cell migration to sites of tissue damage, thereby facilitating tissue repair. This paper discusses the possibility of polarizing immune responses to rationalize and individualize therapy with stem cell interventions, since generalized "one-size-fits-all" therapy is difficult to achieve in the face of the diverse complexities posed by stem cell biology. We also present the challenges to stem cell delivery in the context of the host related factors. Although we focus on the mesenchymal stem cells in this paper, the overarching rationale can be extrapolated to other types of stem cells as well. Hence, the broader purpose of this paper is to initiate a dialogue within the personalized medicine community by expanding the scope of inquiry in the field from pharmaceuticals to stem cells and related cellbased health interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.