Obesity is globally prevalent and highly heritable, but the underlying
genetic factors remain largely elusive. To identify genetic loci for
obesity-susceptibility, we examined associations between body mass index (BMI)
and ~2.8 million SNPs in up to 123,865 individuals, with targeted follow-up of
42 SNPs in up to 125,931 additional individuals. We confirmed 14 known
obesity-susceptibility loci and identified 18 new loci associated with BMI
(P<5×10−8), one of which
includes a copy number variant near GPRC5B. Some loci
(MC4R, POMC, SH2B1, BDNF) map near key hypothalamic
regulators of energy balance, and one is near GIPR, an incretin
receptor. Furthermore, genes in other newly-associated loci may provide novel
insights into human body weight regulation.
Circulating glucose levels are tightly regulated. To identify novel glycemic loci, we performed meta-analyses of 21 genome-wide associations studies informative for fasting glucose (FG), fasting insulin (FI) and indices of β-cell function (HOMA-B) and insulin resistance (HOMA-IR) in up to 46,186 non-diabetic participants. Follow-up of 25 loci in up to 76,558 additional subjects identified 16 loci associated with FG/HOMA-B and two associated with FI/HOMA-IR. These include nine new FG loci (in or near ADCY5, MADD, ADRA2A, CRY2, FADS1, GLIS3, SLC2A2, PROX1 and FAM148B) and one influencing FI/HOMA-IR (near IGF1). We also demonstrated association of ADCY5, PROX1, GCK, GCKR and DGKB/TMEM195 with type 2 diabetes (T2D). Within these loci, likely biological candidate genes influence signal transduction, cell proliferation, development, glucose-sensing and circadian regulation. Our results demonstrate that genetic studies of glycemic traits can identify T2D risk loci, as well as loci that elevate FG modestly, but do not cause overt diabetes.
We aggregated genome-wide genotyping data from 32 European-descent GWAS (74,124 T2D cases, 824,006 controls) imputed to high-density reference panels of >30,000 sequenced haplotypes. Analysis of ˜27M variants (˜21M with minor allele frequency [MAF]<5%), identified 243 genome-wide significant loci (p<5x10-8; MAF 0.02%-50%; odds ratio [OR] 1.04-8.05), 135 not previously-implicated in T2D-predisposition. Conditional analyses revealed 160 additional distinct association signals (p<10-5) within the identified loci. The combined set of 403 T2D-risk signals includes 56 low-frequency (0.5%≤MAF<5%) and 24 rare (MAF<0.5%) index SNPs at 60 loci, including 14 with estimated allelic OR>2. Forty-one of the signals displayed effect-size heterogeneity between BMI-unadjusted and adjusted analyses. Increased sample size and improved imputation led to substantially more precise localisation of causal variants than previously attained: at 51 signals, the lead variant after fine-mapping accounted for >80% posterior probability of association (PPA) and at 18 of these, PPA exceeded 99%. Integration with islet regulatory annotations enriched for T2D association further reduced median credible set size (from 42 variants to 32) and extended the number of index variants with PPA>80% to 73. Although most signals mapped to regulatory sequence, we identified 18 genes as human validated therapeutic targets through coding variants that are causal for disease. Genome wide chip heritability accounted for 18% of T2D-risk, and individuals in the 2.5% extremes of a polygenic risk score generated from the GWAS data differed >9-fold in risk. Our observations highlight how increases in sample size and variant diversity deliver enhanced discovery and single-variant resolution of causal T2D-risk alleles, and the consequent impact on mechanistic insights and clinical translation.
We identified a set of SNPs in the first intron of the FTO (fat mass and obesity associated) gene on chromosome 16q12.2 that is consistently strongly associated with early-onset and severe obesity in both adults and children of European ancestry with an experiment-wise P value of 1.67 x 10(-26) in 2,900 affected individuals and 5,100 controls. The at-risk haplotype yields a proportion of attributable risk of 22% for common obesity. We conclude that FTO contributes to human obesity and hence may be a target for subsequent functional analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.