Liver failure is associated with high morbidity and mortality without transplantation. There are two types of device for temporary support: artificial and bioartificial livers. Artificial livers essentially use non-living components to remove the toxins accumulated during liver failure. Bioartificial livers have bioreactors containing hepatocytes to provide both biotransformation and synthetic liver functions. We review here the operating principles, chemical effects, clinical effects and complications of both types, with specific attention paid to bioartificial systems. Several artificial support systems have FDA marketing authorisation or are CE labelled, but the improvement they provide in terms of patient clinical outcome has not yet been fully demonstrated. At present, different bioartifical systems are being investigated clinically on the basis of their promises and capacity to provide and replace most liver functions. However, important issues such as cost, cell availability, maintenance of cell viability and functionality throughout treatment, and regulatory issues, as well as difficult challenges, including implementing cell-housing devices at the patient's bedside on an emergency basis, have delayed their appearance in intensive care units and on the market. Bioreactors are, nevertheless, when combined with artificial components, a pragmatic approach for future treatment of liver failure.
Current developments in tissue engineering and microtechnology fields allow the use of microfluidic biochip as microtools for in vitro investigations. In the present study, we describe the behavior of HepG2/C3a cells cultivated in a poly(dimethylsiloxane) (PDMS) microfluidic biochip coupled to a perfusion system. Cell culture in the microfluidic biochip for 96 h including 72 h of perfusion provoked a 24 h delay in cell growth compared to plate cultures. Inside the microfluidic biochip, few apoptosis, and necrosis were detected along the culture and 3D cell organization was observed. Regarding the hepatic metabolism, glucose and glutamine consumptions as well as albumin synthesis were maintained. A transcriptomic analysis performed at 96 h of culture using Affymetrix GeneChip demonstrated that 1,025 genes with a fold change above 1.8 were statistically differentially expressed in the microfluidic biochip cultures compared to plate cultures. Among those genes, phase I enzymes involved in the xenobiotic's metabolism such as the cytochromes P450 (CYP) 1A1/2, 2B6, 3A4, 3A5, and 3A7 were up-regulated. The CYP1A1/2 up-regulation was associated with the appearance of CYP1A1/2's activity evidenced by using EROD biotransformation assay. Several phase II enzymes such as sulfotransferases (SULT1A1 and SULT1A2), UDP-glucuronyltransferase (UGT1A1, UGT2B7) and phase III transporters (such as MDR1, MRP2) were also up-regulated. In conclusion, microfluidic biochip could and provide an important insight to exploring the xenobiotic's metabolism. Altogether, these results suggest that this kind of biochip could be considered as a new pertinent tool for predicting cell toxicity and clearance of xenobiotics in vitro.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.