The southeast Australian coast potentially includes a complex biogeographic barrier, largely lacking exposed rocky shore that may limit the dispersal of rocky intertidal taxa and contribute to the maintenance of two biogeographic regions. Surprisingly, within the 300-km barrier region, several species considered exposed rocky shore specialists occurred within sheltered sites. We analysed COI sequence variation for 10 rocky intertidal invertebrate species, with a range of life histories, to test the hypotheses that larval type and habitat specificity are strong predictors of gene flow between biogeographic regions. Our data revealed that the southeast corner of Australia includes a strong barrier to gene flow for six of eight species with planktonic larvae, and a coalescence analysis of sequence differentiation (IM model) suggests that a barrier has existed since the Pleistocene. In contrast, two direct developers were not affected by the barrier. Our comparative approach and data from earlier studies (reviewed here) do not support the hypothesis that larval type predicts gene flow across this barrier, instead we found that the ability to utilize sheltered habitat provides a clearer explanation of the phylogeographic break. Indeed, the species that displayed little or no evidence of a phylogeographic break across the barrier each displayed unexpectedly relaxed habitat specificity.
The climate-driven dynamics of species ranges is a critical research question in evolutionary ecology. We ask whether present intraspecific diversity is determined by the imprint of past climate. This is an ongoing debate requiring interdisciplinary examination of population genetic pools and persistence patterns across global ranges. Previously, contrasting inferences and predictions have resulted from distinct genomic coverage and/or geographical information. We aim to describe and explain the causes of geographical contrasts in genetic diversity and their consequences for the future baseline of the global genetic pool, by comparing present geographical distribution of genetic diversity and differentiation with predictive species distribution modelling (SDM) during past extremes, present time and future climate scenarios for a brown alga, Fucus vesiculosus. SDM showed that both atmospheric and oceanic variables shape the global distribution of intertidal species, revealing regions of persistence, extinction and expansion during glacial and postglacial periods. These explained the distribution and structure of present genetic diversity, consisting of differentiated genetic pools with maximal diversity in areas of long-term persistence. Most of the present species range comprises postglacial expansion zones and, in contrast to highly dispersive marine organisms, expansions involved only local fronts, leaving distinct genetic pools at rear edges. Besides unravelling a complex phylogeographical history and showing congruence between genetic diversity and persistent distribution zones, supporting the hypothesis of niche conservatism, range shifts and loss of unique genetic diversity at the rear edge were predicted for future climate scenarios, impoverishing the global gene pool.
Patterns in morphology, pigment concentration, and light saturation kinetics of Ecklonia radiata reveal great morphological and physiological variability among individuals from sites spanning strong gradients in topographic shading and wave exposure among the 14 fjords in southwestern New Zealand. Morphology of E. radiata varies from relatively narrow (85 6 4.7 mm) (mean 6 standard error), thick (3.2 6 0.30 mm) blades from the well-illuminated, wave-exposed outer coast sites to wide, undulate (460 6 36.8 mm,) and thin (0.46 6 0.059 mm) blades from quiescent, topographically shaded inner fjord sites. Chlorophyll a (Chl a) concentration of blades (0.084-1.34 mg g 21 of tissue) and the ratio of fucoxanthin to Chl a (0.33 to 0.56) also increased along this gradient, indicating photoacclimation within the inner fjord populations. In situ measurements of light saturation kinetics indicate maximum photosynthetic rates at lower irradiance (I max 5 43.7 vs. 257 mmol quanta m 22 s 21 ) for algae at inner fjord sites relative to well-lit outer fjord locations. Individuals exhibiting characteristically photoacclimated relative electron transfer rate curves had more deplete d 13 C (213.35% to 222.35%) than individuals with higher I max . There was no significant association between the kelp morphology or geographic location and the observed recombinant DNA diversity of ITS sequences that would indicate the presence of two Ecklonia species in the fjords. E. radiata occupies a wide range of habitats in Fiordland and displays variability in morphology and photo-physiological responses to low light that coincide with gradients in wave exposure and topographically shaded light conditions.
The implications of mating system for genetic diversity were assessed in the sister species Fucus spiralis and Fucus vesiculosus using a combination of ten microsatellite markers. Five new microsatellite markers specific for F. spiralis were developed in order to increase marker resolution and complement the results (i.e. mating system and genetic diversity extended to a larger geographic scale) acquired using five microsatellite loci previously developed from a mixed fucoid seaweed DNA library that excluded F. spiralis. Low genetic diversities observed at the population and species level in F. spiralis using the five new F. spiralis-specific loci described here were consistent with the results obtained previously with non-specific microsatellite loci. Results revealed that selfing is characteristic in F. spiralis across its latitudinal distribution along the Iberian and French Atlantic coasts. Higher levels of within-population genetic diversity were observed in the outcrossing species F. vesiculosus, decreasing towards the southern distributional range of the species. Some cases of significant biparental inbreeding in this species are indicative of short gamete dispersal or mating of spatially or temporally structured populations. In contrast to within-population diversities, higher total genetic diversity among populations was observed in the hermaphroditic species in comparison to the dioecious F. vesiculosus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.