This paper describes a systems for emotion recognition and its application on the dataset from the AV+EC 2016 Emotion Recognition Challenge. The realized system was produced and submitted to the AV+EC 2016 evaluation, making use of all three modalities (audio, video, and physiological data). Our work primarily focused on features derived from audio. The original audio features were complement with bottleneck features and also text-based emotion recognition which is based on transcribing audio by an automatic speech recognition system and applying resources such as word embedding models and sentiment lexicons. Our multimodal fusion reached CCC=0.855 on dev set for arousal and 0.713 for valence. CCC on test set is 0.719 and 0.596 for arousal and valence respectively.
The identification of research topics and trends is an important scientometric activity, as it can help guide the direction of future research. In the Semantic Web area, initially topic and trend detection was primarily performed through qualitative, top-down style approaches, that rely on expert knowledge. More recently, data-driven, bottom-up approaches have been proposed that offer a quantitative analysis of the evolution of a research domain. In this paper, we aim to provide a broader and more complete picture of Semantic Web topics and trends by adopting a mixed methods methodology, which allows for the combined use of both qualitative and quantitative approaches. Concretely, we build on a qualitative analysis of the main seminal papers, which adopt a top-down approach, and on quantitative results derived with three bottom-up data-driven approaches (Rexplore, Saffron, PoolParty), on a corpus of Semantic Web papers published between 2006 and 2015. In this process, we both use the latter for “fact-checking” on the former and also to derive key findings in relation to the strengths and weaknesses of top-down and bottom-up approaches to research topic identification. Although we provide a detailed study on the past decade of Semantic Web research, the findings and the methodology are relevant not only for our community but beyond the area of the Semantic Web to other research fields as well.
Recently, there is an increasing tendency to embed functionalities for recognizing emotions from user generated media content in automated systems such as call-centre operations, recommendations and assistive technologies, providing richer and more informative user and content profiles. However, to date, adding these functionalities was a tedious, costly, and time consuming effort, requiring identification and integration of diverse tools with diverse interfaces as required by the use case at hand. The MixedEmotions Toolbox leverages the need for such functionalities by providing tools for text, audio, video, and linked data processing within an easily integrable plug-and-play platform. These functionalities include: (i) for text processing: emotion and sentiment recognition, (ii) for audio processing: emotion, age, and gender recognition, (iii) for video processing: face detection and tracking, emotion recognition, facial landmark localization, head pose estimation, face alignment, and body pose estimation, and (iv) for linked data: knowledge graph integration. Moreover, the MixedEmotions Toolbox is open-source and free. In this article, we present this toolbox in the context of the existing landscape, and provide a range of detailed benchmarks on standard test-beds showing its state-of-the-art performance. Furthermore, three real-world use-cases show its effectiveness, namely emotion-driven smart TV, call center monitoring, and brand reputation analysis.
Customer service agents play an important role in bridging the gap between customers' vocabulary and business terms. In a scenario where organisations are moving into semi-automatic customer service, semantic technologies with capacity to bridge this gap become a necessity. In this paper we explore the use of automatic taxonomy extraction from text as a means to reconstruct a customer-agent taxonomic vocabulary. We evaluate our proposed solution in an industry use case scenario in the financial domain and show that our approaches for automated term extraction and using in-domain training for taxonomy construction can improve the quality of automatically constructed taxonomic knowledge bases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.