WISP-2/CCN5 is an estrogen-regulated member of the "connective tissue growth factor/cysteine-rich 61/ nephroblastoma overexpressed" (CCN) family of the cell growth and differentiation regulators. The WISP-2/ CCN5 mRNA transcript is undetectable in normal human mammary cells, as well as in highly aggressive breast cancer cell lines, in contrast with its higher level in the breast cancer cell lines characterized by a more differentiated phenotype. We report here that knockdown of WISP-2/CCN5 by RNA interference in estrogen receptor alpha (ER␣)-positive MCF-7 breast cancer cells induced an estradiol-independent growth linked to a loss of ER␣ expression and promoted epithelial-to-mesenchymal transdifferentiation. In contrast, forced expression of WISP-2/CCN5 directed MCF-7 cells toward a more differentiated phenotype. When introduced into the poorly differentiated, estrogen-independent, and invasive MDA-MB-231 breast cancer cells, WISP-2/ CCN5 was able to reduce their proliferative and invasive phenotypes. In a series of ER␣-positive tumor biopsies, we found a positive correlation between the expression of WISP-2/CCN5 and ID2, a transcriptional regulator of differentiation in normal and transformed breast cells. We propose that WISP-2/CCN5 is an important regulator involved in the maintenance of a differentiated phenotype in breast tumor epithelial cells and may play a role in tumor cell invasion and metastasis.
In vitro enzymatic amplification of nucleic acids by PCR or other techniques is a very sensitive method to detect rare DNA segments. We present here a protocol that allows the rapid, sensitive and precise quantification of DNA molecules using PCR amplification run to saturation. The DNA (or cDNA) to be assayed is co-amplified with known amounts of an internal standard DNA. We show that the latter must be almost identical to the assayed DNA, otherwise quantification at the plateau is unreliable. The read-out of the amplification involves one or two additional oligonucleotides. Using fluorescent oligonucleotides as primers in run-off reactions together with an automated DNA sequencer, we could measure the level of expression of several genes, like the murine MHC class I H-2Kd or a specific T cell receptor beta chain transcript in the course of an immunization. mRNA levels were normalized by measuring in a similar manner the number of transcripts encoding the housekeeping gene HPRT. Finally, our procedure might allow the rapid analysis of a large number of samples at the same time, as illustrated by the simultaneous analysis of the mRNAs encoding the CD4 and CD8 murine T cell markers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.