This paper presents a comparative study of the performance of ferrate(VI), FeO 4 2− , and ferric, Fe (III), towards wastewater treatment. The ferrate(VI) was produced by electrochemical synthesis, using steel electrodes in a 16 M NaOH solution. Domestic wastewater collected from Hailsham North Wastewater Treatment Works was treated with ferrate(VI) and ferric sulphate (Fe(III)). Samples were analysed for suspended solids, chemical oxygen demand (COD), biochemical oxygen demand (BOD) and P removal. Results for low doses of Fe(VI) were validated via a reproducibility study. Removal of phosphorous reached 40% with a Fe(VI) dose as low as 0.01 mg/L compared to 25% removal with 10 mg/L of Fe(III). For lower doses (<1 mg/L as Fe), Fe(VI) can achieve between 60% and 80% removals of SS and COD, but Fe(III) performed even not as well as the control sample where no iron chemical was dosed. The ferrate solution was found to be stable for a maximum of 50 min, beyond which Fe(VI) is reduced to less oxidant species. This provided the maximum allowed storage time of the electrochemically produced ferrate (VI) solution. Results demonstrated that low addition of ferrate(VI) leads to good removal of P, BOD, COD and suspended solids from wastewater compared to ferric addition and further studies could bring an optimisation of the dosage and treatment.
Energy benchmarking is a powerful tool in the optimization of wastewater treatment plants (WWTPs) in helping to reduce costs and greenhouse gas emissions. Traditionally, energy benchmarking methods focused solely on reporting electricity consumption, however, recent developments in this area have led to the inclusion of other types of energy, including electrical, manual, chemical and mechanical consumptions that can be expressed in kWh/m3. In this study, two full-scale WWTPs were benchmarked, both incorporated preliminary, secondary (oxidation ditch) and tertiary treatment processes, Site 1 also had an additional primary treatment step. The results indicated that Site 1 required 2.32 kWh/m3 against 0.98 kWh/m3 for Site 2. Aeration presented the highest energy consumption for both sites with 2.08 kWh/m3 required for Site 1 and 0.91 kWh/m3 in Site 2. The mechanical energy represented the second biggest consumption for Site 1 (9%, 0.212 kWh/m3) and chemical input was significant in Site 2 (4.1%, 0.026 kWh/m3). The analysis of the results indicated that Site 2 could be optimized by constructing a primary settling tank that would reduce the biochemical oxygen demand, total suspended solids and NH4 loads to the oxidation ditch by 55%, 75% and 12%, respectively, and at the same time reduce the aeration requirements by 49%. This study demonstrated that the effectiveness of the energy benchmarking exercise in identifying the highest energy-consuming assets, nevertheless it points out the need to develop a holistic overview of the WWTP and the need to include parameters such as effluent quality, site operation and plant layout to allow adequate benchmarking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.