for the COVID-ICU Gemelli Study Group IMPORTANCE High-flow nasal oxygen is recommended as initial treatment for acute hypoxemic respiratory failure and is widely applied in patients with COVID-19.OBJECTIVE To assess whether helmet noninvasive ventilation can increase the days free of respiratory support in patients with COVID-19 compared with high-flow nasal oxygen alone. DESIGN, SETTING, AND PARTICIPANTSMulticenter randomized clinical trial in 4 intensive care units (ICUs) in Italy between October and December 2020, end of follow-up February 11, 2021, including 109 patients with COVID-19 and moderate to severe hypoxemic respiratory failure (ratio of partial pressure of arterial oxygen to fraction of inspired oxygen Յ200).INTERVENTIONS Participants were randomly assigned to receive continuous treatment with helmet noninvasive ventilation (positive end-expiratory pressure, 10-12 cm H 2 O; pressure support, 10-12 cm H 2 O) for at least 48 hours eventually followed by high-flow nasal oxygen (n = 54) or high-flow oxygen alone (60 L/min) (n = 55). MAIN OUTCOMES AND MEASURESThe primary outcome was the number of days free of respiratory support within 28 days after enrollment. Secondary outcomes included the proportion of patients who required endotracheal intubation within 28 days from study enrollment, the number of days free of invasive mechanical ventilation at day 28, the number of days free of invasive mechanical ventilation at day 60, in-ICU mortality, in-hospital mortality, 28-day mortality, 60-day mortality, ICU length of stay, and hospital length of stay. RESULTS Among 110 patients who were randomized, 109 (99%) completed the trial (median age, 65 years [interquartile range {IQR}, 55-70]; 21 women [19%]). The median days free of respiratory support within 28 days after randomization were 20 (IQR, 0-25) in the helmet group and 18 (IQR, 0-22) in the high-flow nasal oxygen group, a difference that was not statistically significant (mean difference, 2 days [95% CI, −2 to 6]; P = .26). Of 9 prespecified secondary outcomes reported, 7 showed no significant difference. The rate of endotracheal intubation was significantly lower in the helmet group than in the high-flow nasal oxygen group (30% vs 51%; difference, −21% [95% CI, −38% to −3%]; P = .03). The median number of days free of invasive mechanical ventilation within 28 days was significantly higher in the helmet group than in the high-flow nasal oxygen group (28 [IQR,[13][14][15][16][17][18][19][20][21][22][23][24][25][26][27][28] vs 25 ; mean difference, 3 days [95% CI, 0-7]; P = .04). The rate of in-hospital mortality was 24% in the helmet group and 25% in the high-flow nasal oxygen group (absolute difference, −1% [95% CI, −17% to 15%]; P > .99).CONCLUSIONS AND RELEVANCE Among patients with COVID-19 and moderate to severe hypoxemia, treatment with helmet noninvasive ventilation, compared with high-flow nasal oxygen, resulted in no significant difference in the number of days free of respiratory support within 28 days. Further research is warranted to determine...
Purpose of review Noninvasive respiratory support has been widely applied during the COVID-19 pandemic. We provide a narrative review on the benefits and possible harms of noninvasive respiratory support for COVID-19 respiratory failure. Recent findings Maintenance of spontaneous breathing by means of noninvasive respiratory support in hypoxemic patients with vigorous spontaneous effort carries the risk of patient self-induced lung injury: the benefit of averting intubation in successful patients should be balanced with the harms of a worse outcome in patients who are intubated after failing a trial of noninvasive support. The risk of noninvasive treatment failure is greater in patients with the most severe oxygenation impairment (PaO 2 /FiO 2 < 200 mmHg). High-flow nasal oxygen (HFNO) is the most widely applied intervention in COVID-19 patients with hypoxemic respiratory failure. Also, noninvasive ventilation (NIV) and continuous positive airway pressure delivered with different interfaces have been used with variable success rates. A single randomized trial showed lower need for intubation in patients receiving helmet NIV with specific settings, compared to HFNO alone. Prone positioning is recommended for moderate-to-severe acute respiratory distress syndrome patients on invasive ventilation. Awake prone position has been frequently applied in COVID-19 patients: one randomized trial showed improved oxygenation and lower intubation rate in patients receiving 6-h sessions of awake prone positioning, as compared to conventional management. Summary Noninvasive respiratory support and awake prone position are tools possibly capable of averting endotracheal intubation in COVID-19 patients; carefully monitoring during any treatment is warranted to avoid delays in endotracheal intubation, especially in patients with PaO 2 /FiO 2 < 200 mmHg.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.