Continuous-flow photochemistry in microreactors receives a lot of attention from researchers in academia and industry as this technology provides reduced reaction times, higher selectivities, straightforward scalability, and the possibility to safely use hazardous intermediates and gaseous reactants. In this review, an up-to-date overview is given of photochemical transformations in continuous-flow reactors, including applications in organic synthesis, material science, and water treatment. In addition, the advantages of continuous-flow photochemistry are pointed out and a thorough comparison with batch processing is presented.
In the last decade, visible-light photoredox catalysis has emerged as a powerful strategy to enable novel transformations in organic synthesis. Owing to mild reaction conditions (i.e., room temperature, use of visible light) and high functional-group tolerance, photoredox catalysis could represent an ideal strategy for chemoselective biomolecule modification. Indeed, a recent trend in photoredox catalysis is its application to the development of novel methodologies for amino acid modification. Herein, an up-to-date overview of photocatalytic methodologies for the modification of single amino acids, peptides, and proteins is provided. The advantages offered by photoredox catalysis and its suitability in the development of novel biocompatible methodologies are described. In addition, a brief consideration of the current limitations of photocatalytic approaches, as well as future challenges to be addressed, are discussed.
A mild and practical method for the preparation of disulfides through visible-light-induced photocatalytic aerobic oxidation of thiols has been developed. The method involves the use of TiO2 as a heterogeneous photocatalyst. The catalyst's high stability and recyclability makes this method highly practical. The reaction can be substantially accelerated in a continuous-flow packed-bed reactor, which enables a safe and reliable scale-up of the reaction conditions. The batch and flow protocol described herein can be applied to a diverse set of thiol substrates for the preparation of homo- and hetero-dimerized disulfides. Furthermore, biocompatible reaction conditions (i.e., room temperature, visible light, neutral buffer solution, and no additional base) have been developed, which permits the rapid and chemoselective modification of densely functionalized peptide substrates without recourse to complex purification steps.
A mild visible‐light‐mediated strategy for cysteine arylation is presented. The method relies on the use of eosin Y as a metal‐free photocatalyst and aryldiazonium salts as arylating agents. The reaction can be significantly accelerated in a microflow reactor, whilst allowing the in situ formation of the required diazonium salts. The batch and flow protocol described herein can be applied to obtain a broad series of arylated cysteine derivatives and arylated cysteine‐containing dipeptides. Moreover, the method was applied to the chemoselective arylation of a model peptide in biocompatible reaction conditions (room temperature, phosphate‐buffered saline (PBS) buffer) within a short reaction time.
We
report the development and scale-up of a continuous flow photochemical
benzylic bromination en route to belzutifan (MK-6482), a small molecule
for the treatment of renal cell carcinoma associated with Von Hippel–Lindau
syndrome. Compared with the clinical supply route, the photochemical
approach circumvents the need for azo radical initiators and proceeds
at room temperature. Implementation of continuous flow technology
allowed tight control of irradiation and residence time, resulting
in a robust process with minimized byproduct formation. This method
was selected for the manufacturing process for belzutifan and represents
the first commercial continuous flow photochemical process in our
company, laying the foundation for the utilization of photochemistry
in the pharmaceutical industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.