Cranial radiation therapy is commonly used in the treatment of childhood cancers. It is associated with cognitive impairments tentatively linked to the hippocampus, a neurogenic region of the brain important in memory function and learning. Hippocampal neurogenesis is positively regulated by voluntary exercise, which is also known to improve hippocampal-dependent cognitive functions. In this work, we irradiated the brains of C57/BL6 mice on postnatal day 9 and evaluated both the acute effects of irradiation and the effects of voluntary running on hippocampal neurogenesis and behavior 3 months after irradiation. Voluntary running significantly restored precursor cell and neurogenesis levels after a clinically relevant, moderate dose of irradiation. We also found that irradiation perturbed the structural integration of immature neurons in the hippocampus and that this was reversed by voluntary exercise. Furthermore, irradiation-induced behavior alterations observed in the open-field test were ameliorated. Together, these results clearly demonstrate the usefulness of physical exercise for functional and structural recovery from radiation-induced injury to the juvenile brain, and they suggest that exercise should be evaluated in rehabilitation therapy of childhood cancer survivors.exercise ͉ juvenile ͉ open field ͉ radiotherapy ͉ stem cell
Background Human immunodeficiency virus (HIV) associated neurocognitive disorders (HAND), including memory dysfunction, continue to be a major clinical manifestation of HIV type-1 (HIV-1) infection. Viral proteins released by infected glia are thought to be the principal triggers of inflammation and bystander neuronal injury and death, thereby driving key symptomatology of HAND. Methods We used a GFAP-driven, doxycycline (DOX)-inducible HIV-1 Tat (transactivator of transcription) transgenic mouse model and examined structure-function relationships in hippocampal pyramidal CA1 neurons using morphologic (Golgi-silver impregnations, immunohistochemistry, TUNEL detection, synaptic protein markers, electron microscopy), electrophysiological (long-term potentiation (LTP)), and behavioral (Morris water maze, fear-conditioning) approaches. Results Tat induction caused a variety of different inclusions in astrocytes characteristic of lysosomes, autophagic vacuoles, and lamellar bodies, which were typically present within distal cytoplasmic processes. In pyramidal CA1 neurons, Tat induction reduced the number of apical dendritic spines, while disrupting the distribution of synaptic proteins (synaptotagmin 2 and gephyrin) associated with inhibitory transmission, but with minimal dendritic pathology and no evidence of pyramidal neuron death. Electrophysiological assessment of excitatory postsynaptic field potential (fEPSP) at Schaffer collateral/commissural fiber-CA1 synapses showed near total suppression of LTP in mice expressing Tat. The loss in LTP coincided with disruptions in learning and memory. Conclusion Tat expression in the brain results in profound functional changes in synaptic physiology and in behavior that are accompanied by only modest structural changes and minimal pathology. Tat likely contributes to HAND by causing molecular changes that disrupt synaptic organization, with inhibitory presynaptic terminals containing synaptotagmin 2 appearing especially vulnerable.
HIV-1 infection predisposes the central nervous system to damage by opportunistic infections and environmental insults. Such maladaptive plasticity may underlie the exaggerated comorbidity seen with HIV-1 infection and opioid abuse. Although morphine and HIV-1 Tat synergize at high concentrations to increase neuronal death in vitro, we questioned whether chronic low Tat exposure in vivo might contribute to the spectrum of neuropathology through sublethal neuronal injury. We used a doxycycline-driven, inducible, HIV-1 Tat transgenic mouse, in which striatal neuron death was previously shown to be absent, to examine effects of differential Tat expression, alone and combined with morphine. Low constitutive Tat expression caused neurodegeneration; higher levels induced by 7 days of doxycycline significantly reduced dendritic spine numbers. Moreover, Tat expression widely disrupted the endogenous opioid system, altering and , but not ␦, opioid receptor and proopiomelanocortin, proenkephalin, and prodynorphin transcript levels in cortex, hippocampus, and striatum. In addition to markedly reducing spine density by itself, morphine amplified the effect of higher levels of Tat on spines, and also potentiated Tat-mediated dendritic pathology, thus contributing to maladaptive neuroplasticity at multiple levels. The dendritic pathology and reductions in spine density suggest that sustained Tat ؎ morphine exposure un- Exposure to HIV results in neurodegenerative alterations in the central nervous system (CNS) of a substantial proportion of patients, even in the era of highly active anti-retroviral therapy. Highly active anti-retroviral therapy does not readily cross the blood-brain barrier, making the CNS a safe-haven for infection, and permitting ongoing degenerative changes even when viral titers are quite low in the periphery. [1][2][3][4][5][6] There is considerable evidence, both in patients and in experimental models, that coexposure to abused opiate drugs can hasten the onset and worsen the outcome of HIV encephalitis and other neurodegenerative changes.7-15 A more limited number of studies show that opioids increase viral loads, and hasten disease progression and/or neuropathology in simian immunodeficiency models, 16 -19 although this has been controversial. 20 -22 Our in vitro work has consistently shown evidence for interactions between Tat or gp120 and morphine that accelerate neurodegeneration. These interactive effects appear to be orchestrated by glial cells, 23 and likely involve synergistic upregulation of proinflammatory chemokine/cytokine release and production of reactive species. 24 -26 The present work was undertaken to extend previous results suggesting that HIV-1 Tat exposure might disrupt endogenous opioid and chemokine signaling.
Our understanding of the active role that astrocytes play in modulating neuronal function and behavior is rapidly expanding, but little is known about the role that astrocytes may play in drug-seeking behavior for commonly abused substances. Given that the nucleus accumbens is critically involved in substance abuse and motivation, we sought to determine whether nucleus accumbens astrocytes influence the motivation to self-administer ethanol following abstinence. We found that the packing density of astrocytes that were expressing glial fibrillary acidic protein increased in the nucleus accumbens core (NAcore) during abstinence from EtOH selfadministration. No change was observed in the nucleus accumbens shell. This increased NAcore astrocyte density positively correlated with the motivation for ethanol. Astrocytes can communicate with one another and influence neuronal activity through gap-junction hemichannels. Because of this, the effect of blocking gap-junction hemichannels on the motivation for ethanol was examined. The motivation to self-administer ethanol after 3 weeks abstinence was increased following microinjection of gap-junction hemichannel blockers into the NAcore at doses that block both neuronal and astrocytic channels. In contrast, no effect was observed following microinjection of doses that are not thought to block astrocytic channels or following microinjection of either dose into the nucleus accumbens shell. Additionally, the motivation for sucrose after 3 weeks abstinence was unaffected by NAcore gap-junction hemichannel blockers. Next, Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) were selectively expressed in NAcore astrocytes to test the effect of astrocyte stimulation. DREADD activation increased cytosolic calcium in primary astrocytes, facilitated responding for rewarding brain stimulation, and reduced the motivation for ethanol after 3 weeks abstinence. This is the first work to modulate drug-seeking behavior with astrocyte-specific DREADDs. Taken together, our findings demonstrate that NAcore astrocytes can shape the motivation to self-administer ethanol; suggesting that the development of ligands which selectively stimulate astrocytes may be a successful strategy to abate ethanol-seeking behavior.
Opioids have previously been shown to affect proliferation and differentiation in various neural cell types. In the present study, cultured rat adult hippocampal progenitors (AHPs) were shown to release beta-endorphin. Membrane preparations of AHPs were found to bind [125I]beta-endorphin, and immunoreactivity for mu- and delta-opioid receptors (MORs and DORs), but not for kappa-opioid receptors (KORs), was found on cells in culture. Both DNA content and [3H]thymidine incorporation were reduced after a 48-h incubation with 100 microM naloxone, 10 micro m naltrindole or 10 microM beta-funaltrexamine, but not nor-binaltorphimine, suggesting proliferative actions of endogenous opioids against MORs and DORs on AHPs. Furthermore, analysis of gene and protein expression after incubation with MOR and DOR antagonists for 48 h using RT-PCR and Western blotting suggested decreased signalling through the mitogen-activated protein kinase (MAPK) pathway and lowered levels of genes and proteins that are important in cell cycling. Cultures were incubated with naloxone (10 or 100 microM) for 10 days to study the effects on differentiation. This resulted in an approximately threefold increase in neurogenesis, a threefold decrease in astrogliogenesis and a 50% decrease in oligodendrogenesis. In conclusion, this study suggests that reduced signalling through MORs and DORs decreases proliferation in rat AHPs, increases the number of in vitro-generated neurons and reduces the number of astrocytes and oligodendrocytes in culture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.