The complexity depicted by disease scenarios as diabetes mellitus, constitutes a very interesting field of study when drugs and biologically relevant components may be affected by such environments. In this report, the interaction between the protein Human Serum Albumin (HSA) and two antidiabetics (Andb), Gliclazide (Gli) and Glipizide (Glip) was studied through fluorescence and docking assays, in order to characterize these systems. On the basis that HSA and Andb can be exposed in vivo at high Reactive Oxygen Species (ROS) concentrations in diabetic patients, the degradative process of the protein free and bound to Andb, in presence of the species singlet molecular oxygen (O2((1)Δg)), was evaluated. Fluorescence and docking assays indicated that Gli, as well as Glip bind to HSA on two sites, with binding constants values in the order of 10(4)-10(5)M(-1). Likewise, docking assays revealed that the location of Gli or Glip on the protein may be the HSA binding sites II and III. Thermodynamic parameters showed that the interaction between HSA and Glip is a favored, enthalpically-controlled process. Oxygen uptake experiments indicated that Glip is less photooxidizable than Gli through a O2((1)Δg)-mediated process. Besides, the protein-Andb binding produced a decrease in the overall rate constant for O2((1)Δg) quenching as compared to the value for the free protein. This fact could be interpreted in terms of a reduction in the availability of Tyrosine residues in the bonded protein, with a concomitant decrease in the physical quenching deactivation of the oxidative species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.