ZIF-8 nanocrystals have exhibited different mechanisms for rhodamine B degradation in water under various circumstances.
To investigate the role of tachysterol in the photophysical/photochemical regulation of vitamin D photosynthesis, we studied its electronic absorption properties and excited state dynamics using time-dependent density functional theory (TDDFT), second-order approximate coupled cluster theory (CC2), and non-adiabatic surface hopping molecular dynamics in the gas phase. In excellent agreement with experiments, the simulated electronic spectrum shows a broad absorption band with a remarkably higher extinction coefficient than the other vitamin D photoisomers provitamin D, lumisterol, and previtamin D. The broad band arises from the spectral overlap of four different ground state rotamers. After photoexcitation, the first excited singlet state (S 1 ) decays with a lifetime of 882 fs. The S 1 dynamics is characterized by a strong twisting of the central double bond. In 96% of all trajectories this is followed by unreactive relaxation to the ground state near a conical intersection. The double-bond twisting in the chemically unreactive trajectories induces a strong interconversion between the different rotamers. In 2.3 % of the trajectories we observed [1,5]-sigmatropic hydrogen shift forming the partly deconjugated toxisterol D1. 1.4 % previtamin D formation is observed via hula-twist double bond isomerization. In both reaction channels, we find a strong dependence between photoreactivity and dihedral angle conformation: hydrogen shift only occurs in cEc and cEt rotamers and double bond isomerization occurs mainly in cEc rotamers. Hence, our study confirms the previously formed hypothesis that cEc rotamers are more prone to previtamin D formation than other isomers. In addition, we also observe the formation of a cyclobutene-toxisterol in the hot ground state in 3 trajectories (0.7 %).Due to its large extinction coefficient and mostly unreactive behavior, tachysterol acts mainly as a sun shield suppressing previtamin D formation. Tachysterol shows stronger toxisterol formation than previtamin D and can thus be seen as the major degradation route of vitamin D. Absorption of low energy ultraviolet light by the cEc rotamer can lead to previtamin D formation. In addition the cyclobutene-toxisterol, which possibly reacts thermally to previtamin D, is also preferably formed at long 2 wavelengths. These two mechanisms are consistent with the wavelength dependent photochemistry found in experiments. Our study reinforces a recent hypothesis that tachysterol constitutes a source of previtamin D when only low energy ultraviolet light is available, as it is the case in winter or in the morning and evening hours of the day.3
The photosynthesis of vitamin D3 in mammalian skin results from UV-B irradiation of provitamin D3 (7-dehydrocholesterol, DHC) at ca. 290 nm. Upon return to the ground state, the hexatriene product, previtamin D3, undergoes a conformational equilibration between helical gZg and more planar tZg and tZt forms. The helical gZg forms provide a pathway for the formation of vitamin D3 via a [1,7]-sigmatropic hydrogen shift. Steady state photolysis and UV transient absorption spectroscopy are combined to explore the conformational relaxation of previtamin D3 formed from DHC in isotropic solution and confined to lipid bilayers chosen to model the biological cell membrane. The results are compared with measurements for two analogues: previtamin D2 formed from ergosterol (provitamin D2) and previtamin D3 acetate formed from DHC acetate. The resulting spectral dynamics are interpreted in the context of simulations of optical excitation energy and oscillator strength as a function of conformation. In solution, the relaxation dynamics and steady state product distributions of the three compounds are nearly identical, favoring tZg forms. When confined to lipid bilayers, the heterogeneity and packing forces alter the conformational distributions and enhance the population of a gZg conformer capable of vitamin D formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.