Ni2+ toxicity was evaluated in Triticum aestivum L. by its effects on root and shoot length, dry matter production and water content. Over a threshold value of 20 mmol m−3 Ni2+ the degree of toxicity increases as a function of the Ni2+ concentration in the medium. Ni2+‐treated roots show enhanced lipid peroxidation; the higher Ni2+ treatment (40mmol m−3) also increases leakage of K+. In roots and shoots, Ni2+ enhances both guaiacol and syringaldazine extracellular peroxidase activity. The increase in extracellular peroxidase activity is also associated with an increase in the phenolic contents of roots and shoots. The observed growth inhibition might be partly the result of the effect of Ni2+ on cell turgor and cell‐wall extensibility. Intracellular soluble peroxidases are also stimulated by Ni2+; such effects, independently of the substrate, were detected in extracts of Ni2+‐treated shoots at a lower Ni2+ concentration than in the roots. Intracellular peroxidases might act as scavengers of peroxide radicals produced as a result of nickel toxicity.
We studied the involvement of the phytotoxic hydrophobin cerato-ulmin (CU) in pathogenesis and virulence of Dutch elm disease (DED) by expressing its encoding gene (cu) in Ophiostoma quercus, a nonpathogenic species on elm closely related to the DED pathogens O. ulmi and O. novo-ulmi. The production of the toxin was quantitatively determined in culture filtrates and in mycelial extracts of the transformants. Production of CU in vitro was associated with the ability to cause typical DED symptoms, consisting of foliar yellow and wilting and vascular tissue discoloration on a moderately resistant elm genotype. The presence of CU was monitored by enzyme-linked immunosorbent assay in symptomatic leaves of plants inoculated with O. quercus transformants expressing CU and found to be associated with wilt symptoms. In general, the virulence of the cu-expressing transformants, as measured in terms of vascular discoloration and percentage of defoliation, was lower than that of the mildly pathogenic isolate E2 of O. ulmi. However, one transformant (C39) displayed a virulence level intermediate between that of E2 and 182, a highly virulent isolate of O. novo-ulmi. Our results indicate that CU production influences virulence in nonaggressive strains of Ophiostoma fungi.
Cerato-platanin (CP) is a protein produced by Ceratocystis platani, the causal agent of canker stain disease of plane trees. CP is the first member of the 'cerato-platanin family', and its role as a pathogen-associated molecular pattern (PAMP), inducing defence responses both in host and nonhost plants, is established. However, the primary role of CP and its homologues in the fungal life remains unknown. In the present work, we investigated the regulation of the cp gene during the in vitro growth of C. platani in different conditions and under the effect of potential stress factors. Fungal growth and conidiogenesis were also analysed. Results showed that cp is a single-copy gene whose expression level is strictly associated with hyphal growth and with chlamydospores formation. The analysis of a 1368 bp 5'-flanking region revealed putative motifs that could be involved in the regulation of gene expression in response to stress and developmental cues. Taking into account the localization of CP in the fungal cell wall and the recently published 3D structure of the protein, our results support a role for CP in growth and developmental processes of C. platani.
Natural variants of cerato-platanin (CP), a pathogen associated molecular pattern (PAMP) protein produced by Ceratocystis platani (the causal agent of the plane canker stain), have been found to be produced by other four species of the genus Ceratocystis, including five clones of Ceratocystis fimbriata isolated from different hosts. All these fungal strains were known to be pathogenic to plants with considerable importance in agriculture, forestry, and as ornamental plants. The putative premature proteins were deduced on the basis of the nucleotide sequence of genes orthologous to the cp gene of C. platani; the deduced premature proteins of Ceratocystis populicola and Ceratocystis variospora reduced the total identity of all the others from 87.3% to 60.3%. Cerato-populin (Pop1), the CP-orthologous protein produced by C. populicola, was purified and characterized. Pop1 was a well-structured alpha/beta protein with a different percentage of the alpha-helix than CP, and it self-assembled in vitro in ordered aggregates. Moreover, Pop1 behaved as PAMP, since it stimulated poplar leaf tissues to activate defence responses able to reduce consistently the C. populicola growth.
Based on sequence homology, several fungal Cys-rich secreted proteins have been grouped in the cerato-platanin (CP) family, which comprises at least 40 proteins involved mainly in eliciting defense-related responses. The core member of this family is cerato-platanin, a moderately hydrophobic protein with a double ψ-β barrel fold. CP and the recently identified orthologous cerato-populin (Pop1) are involved in host-fungus interaction, and can be considered non-catalytic fungal PAMPs. CP is more active in inducing defense when in an aggregated conformation than in its native form, but little is known about other CP-orthologous proteins. Here, we cloned, expressed, and purified recombinant Pop1, which was used to characterize the protein aggregates. Our results suggest that the unfolded, self-assembled Pop1 is more active in inducing defense, and that the unfolding process can be induced by interaction with hydrophobic inanimate surfaces such as Teflon, treated mica, and gold sheets. In vivo, we found that both CP and Pop1 interact with the hydrophobic cuticle of leaves. Therefore, we propose that the interaction of these proteins with host cuticle waxes could induce unfolding and consequently trigger their PAMP-like activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.