We have identified a new mixed lineage leukemia (MLL) gene fusion partner in a patient with treatment-related acute myeloid leukemia (AML) presenting a t(2;11)(q37;q23) as the only cytogenetic abnormality. Fluorescence in situ hybridization demonstrated a rearrangement of the MLL gene and molecular genetic analyses identified a septin family gene, SEPT2, located on chromosome 2q37, as the fusion partner of MLL. RNA and DNA analyses showed the existence of an in-frame fusion of MLL exon 7 with SEPT2 exon 3, with the genomic breakpoints located in intron 7 and 2 of MLL and SEPT2, respectively. Search for DNA sequence motifs revealed the existence of two sequences with 94.4% homology with the topoisomerase II consensus cleavage site in MLL intron 7 and SEPT2 intron 2. SEPT2 is the fifth septin family gene fused with MLL, making this gene family the most frequently involved in MLL-related AML (about 10% of all known fusion partners). The protein encoded by SEPT2 is highly homologous to septins 1, 4 and 5 and is involved in the coordination of several key steps of mitosis. Further studies are warranted to understand why the septin protein family is particularly involved in the pathogenesis of MLL-associated leukemia.
One of the MLL fusion partners in leukemia is the SEPT6 gene, which belongs to the evolutionarily conserved family of genes of septins. In this work we aimed to characterize at both the RNA and DNA levels three acute myeloid leukemias with cytogenetic evidence of a rearrangement between 11q23 and Xq24. Molecular analysis led to the identification of several MLL-SEPT6 fusion transcripts in all cases, including a novel MLL-SEPT6 rearrangement (MLL exon 6 fused with SEPT6 exon 2). Genomic DNA breakpoints were found inside or near Alu or LINE repeats in the MLL breakpoint cluster region, whereas the breakpoint junctions in the SEPT6 intron 1 mapped to the vicinity of GC-rich low-complexity repeats, Alu repeats, and a topoisomerase II consensus cleavage site. These data suggest that a non-homologous end-joining repair mechanism may be involved in the generation of MLL-SEPT6 rearrangements in acute myeloid leukemia.
BackgroundAbnormalities of 11q23 involving the MLL gene are found in approximately 10% of human leukemias. To date, nearly 100 different chromosome bands have been described in rearrangements involving 11q23 and 64 fusion genes have been cloned and characterized at the molecular level. In this work we present the identification of a novel MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia.MethodsCytogenetics, fluorescence in situ hybridization (FISH), molecular studies (RT-PCR and LDI-PCR), and bioinformatic sequence analysis were used to characterize the CT45A2 gene as novel MLL fusion partner in pediatric acute leukemia.ResultsFluorescence in situ hybridization of bone marrow G-banded metaphases demonstrated a cryptic insertion of 11q23 in Xq26.3 involving the MLL gene. Breakpoint fusion analysis revealed that a DNA fragment of 653 kb from 11q23, containing MLL exons 1-9 in addition to 16 other 11q23 genes, was inserted into the upstream region of the CT45A2 gene located at Xq26.3. In addition, a deletion at Xq26.3 encompassing the 3' region of the DDX26B gene (exons 9-16) and the entire CT45A1 gene was identified. RNA analysis revealed the presence of a novel MLL-CT45A2 fusion transcript in which the first 9 exons of the MLL gene were fused in-frame to exon 2 of the CT45A2 gene, resulting in a spliced MLL fusion transcript with an intact open reading frame. The resulting chimeric transcript predicts a fusion protein where the N-terminus of MLL is fused to the entire open reading frame of CT45A2. Finally, we demonstrate that all breakpoint regions are rich in long repetitive motifs, namely LINE/L1 and SINE/Alu sequences, but all breakpoints were exclusively identified outside these repetitive DNA sequences.ConclusionWe have identified CT45A2 as a novel spliced MLL fusion partner in a pediatric patient with de novo biphenotypic acute leukemia, as a result of a cryptic insertion of 11q23 in Xq26.3. Since CT45A2 is the first Cancer/Testis antigen family gene found fused with MLL in acute leukemia, future studies addressing its biologic relevance for leukemogenesis are warranted.
We describe a new scleral fixation technique for posterior chamber intraocular lens (IOL) implantation in eyes with partial or total loss of the posterior capsule or zonule support. This technique uses a scleral incision that can be completed in less time than a conventional scleral flap and prevents unnecessary trauma to the eye. A double-thread, 10-0 polypropylene suture loop is introduced once through a scleral layer pathway inside the eye. The free ends of the polypropylene suture are buried between the 2 edges of the scleral incision. This technique was used in 15 eyes, with a follow-up of 6 to 30 months. Complications included iris capture, irregular pupil, hyphema, vitreous hemorrhage, choroidal hemorrhage, localized peripheral anterior synechias, and retinal detachment. The mean postoperative visual acuity was 20/40 at the last follow-up. This modified technique is an easy and effective way to achieve scleral fixation of the IOL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.