Although ovarian nerve growth factor (NGF) facilitates follicular development and ovulation, an excess of the neurotrophin in the rodent ovary reduces ovulatory capacity and causes development of precystic follicles. Here we show that ovarian NGF production is enhanced in patients with polycystic ovarian syndrome (PCOS) and that transgenically driven overproduction of NGF targeted to the ovary results in cystic morphology, when accompanied by elevated LH levels. NGF levels are increased in the follicular fluid from PCOS ovaries and in the culture medium of granulosa cells from PCOS patients, as compared with non-PCOS patients. Ovaries from transgenic mice carrying the NGF gene targeted to thecal-interstitial cells by the 17alpha-hydroxylase gene promoter produce more NGF than wild-type (WT) ovaries and are hyperinnervated by sympathetic nerves. Antral follicle growth is arrested resulting in accumulation of intermediate size follicles, many of which are apoptotic. Peripubertal transgenic mice respond to a gonadotropin challenge with a greater increase in plasma 17-hydroxyprogesterone, estradiol, and testosterone levels than WT controls. Transgenic mice also exhibit a reduced ovulatory response, delayed puberty, and reduced fertility, as assessed by a prolonged interval between litters, and a reduced number of pups per litter. Sustained, but mild, elevation of plasma LH levels results in a heightened incidence of ovarian follicular cysts in transgenic mice as compared with WT controls. These results suggest that overproduction of ovarian NGF is a component of polycystic ovarian morphology in both humans and rodents and that a persistent elevation in plasma LH levels is required for the morphological abnormalities to appear.
In premenopausal and menopausal women in particular, suboptimal estrogens have been linked to the development of the metabolic syndrome as major contributors to fat accumulation. At the same time, estrogens have been described to have a role in regulating body metabolic status. We evaluated how endogenous or administered estrogens impact on the changes associated with high-fat diet (HFD) consumption in 2 different paradigms; ovarian-intact and in ovariectomized mice. When estradiol (E2) was cyclically administered to ovarian-intact HFD-fed mice for 12 weeks, animals gained significantly less weight than ovarian-intact vehicle controls (P < .01). This difference was mainly due to a reduced caloric intake but not to an increase in energy expenditure or locomotor activity. This E2 treatment regime to mice exposed to HFD was overall able to avoid the increase of visceral fat content to levels of those found in mice fed a regular chow diet. In the ovariectomized model, the main body weight and fat content reducing action of E2 was not only through decreasing food intake but also by increasing the whole-body energy expenditure, locomotor activity, and by inducing fat oxidation. Importantly, these animals became responsive to the anorexigenic effects of leptin in contrast to the vehicle-treated and the pair-fed control groups (P < .01). Further, in vitro hypothalamic secretion experiments revealed that treatment of obese mice with E2 is able to modulate the secretion of appetite-regulating neuropeptides; namely, E2 increased the secretion of the anorectic neuropeptide α-melanocyte-stimulating hormone and decreased the secretion of the orexigenic neuropetides neuropeptide Y and Agouti-related peptide. In conclusion, differences in response to E2 treatment of HFD-fed animals depend on their endogenous estrogenic status. Overall, E2 administration overcomes arcuate leptin resistance and partially prevents fat accumulation on these mice.
Recent studies have demonstrated that neurotrophins (NTs) and their Trk tyrosine kinase receptors, thought to be exclusively required for development of the nervous system, are also involved in controlling ovarian development. Here we show that primordial follicle formation is decreased in the absence of nerve growth factor (NGF) or its receptor TrkA, and in the absence of TrkB, the receptor for neurotrophin-4 (NT4) and brain-derived neurotrophic factor (BDNF). This deficiency is not due to premature oocyte loss, because the ovaries of trkA-/- and trkB-/- mice do not show an increased rate of oocyte death antedating the initiation of folliculogenesis. Moreover, exposure of NGF-deficient ovaries to NGF rescues the defect in follicular assembly, if TrkA receptors are present, suggesting that the absence of neurotrophins causes a delay, and not an irretrievable loss, of follicle formation. Both the number of secondary follicles and FSH receptor (FSHR) expression are diminished in trkA and trkB-null ovaries, but not in ovaries lacking the common NT receptor p75NTR. Transient exposure of wild-type (WT) ovaries to NT4 increases FSHR gene expression and enhances the ability of the ovary to respond to FSH with formation of cyclin D2, a cell-cycle protein mediating the proliferative actions of FSH in the ovary. These results indicate that both TrkA and TrkB receptors are necessary for the timely assembly of primordial follicles and for sustaining early follicular development. They also suggest that a mechanism by which TrkB receptors facilitate subsequent follicle development is by inducing the formation of functional FSHR.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.