This study followed the academic growth of four university teachers, over a two-year period, with the intention of enhancing inquiry-based learning in practice. Data were generated within the natural settings of classrooms, laboratories and lecture halls, through the analysis of teaching materials, low-participation observation, informal discussions and semi-formal interviews. The research approach was based on a critical social paradigm, assuming principles of actionresearch methodology privileging a transitional 'instructional coaching approach'. Outcomes show a marked interest in the design and development of innovative approaches to teaching, learning, feedback and assessment. They demonstrated strong collaborative practices, insightful reflections on their teaching activities, and willingness to share evaluations both within and without of university contexts and successfully contributing thoughts and ideas to a wider audience.
Human mitochondrial DNLZ/HEP regulates the catalytic activity and solubility of the mitochondrial hsp70 chaperone HSPA9. Here, we investigate the role that the DNLZ zinc-binding and C-terminal subdomains play in regulating HSPA9. We show that truncations lacking portions of the zinc-binding subdomain (ZBS) do not affect the solubility of HSPA9 or its ATPase domain, whereas those containing the ZBS and at least 10 residues following this subdomain enhance chaperone solubility. Binding measurements further show that DNLZ requires its ZBS to form a stable complex with the HSPA9 ATPase domain, and ATP hydrolysis measurements reveal that the ZBS is critical for full stimulation of HSPA9 catalytic activity. We also examined if DNLZ is active in vivo. We found that DNLZ partially complements the growth of Dzim17 Saccharomyces cerevisiae, and we discovered that a Zim17 truncation lacking a majority of the C-terminal subdomain strongly complements growth like full-length Zim17. These findings provide direct evidence that human DNLZ is a functional ortholog of Zim17. In addition, they implicate the pair of antiparallel b-strands that coordinate zinc in Zim17/DNLZ-type proteins as critical for binding and regulating hsp70 chaperones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.