Because significant global changes are currently underway in the Arctic, creating a large‐scale standardized database for Arctic marine biodiversity is particularly pressing. This study evaluates the potential of aquatic environmental DNA (eDNA) metabarcoding to detect Arctic coastal biodiversity changes and characterizes the local spatio‐temporal distribution of eDNA in two locations. We extracted and amplified eDNA using two COI primer pairs from ~80 water samples that were collected across two Canadian Arctic ports, Churchill and Iqaluit, based on optimized sampling and preservation methods for remote regions surveys. Results demonstrate that aquatic eDNA surveys have the potential to document large‐scale Arctic biodiversity change by providing a rapid overview of coastal metazoan biodiversity, detecting nonindigenous species, and allowing sampling in both open water and under the ice cover by local northern‐based communities. We show that DNA sequences of ~50% of known Canadian Arctic species and potential invaders are currently present in public databases. A similar proportion of operational taxonomic units was identified at the species level with eDNA metabarcoding, for a total of 181 species identified at both sites. Despite the cold and well‐mixed coastal environment, species composition was vertically heterogeneous, in part due to river inflow in the estuarine ecosystem, and differed between the water column and tide pools. Thus, COI‐based eDNA metabarcoding may quickly improve large‐scale Arctic biomonitoring using eDNA, but we caution that aquatic eDNA sampling needs to be standardized over space and time to accurately evaluate community structure changes.
This qualitative theoretical study was conducted in response to the current need for an inclusive and comprehensive model to guide the preparation and assessment of teacher candidates for culturally responsive teaching. The process of developing a model of culturally responsive teaching involved three steps: a comprehensive review of the liter ature; a synthesis of the literature into thematic categories to capture the dispositions and behaviors of culturally responsive teaching; and the piloting of these thematic categories with teacher candidates to validate the usefulness of the categories and to generate specific exemplars of behavior to represent each category. The model of culturally responsive teaching contains five thematic categories: (1) content integration, (2) facilitating knowledge construction, (3) prejudice reduction, (4) social justice, and (5) academic development. The current model is a promising tool for comprehensively defining culturally responsive teaching in the context of teacher education as well as to guide curriculum and assessment changes aimed to increase candidates' culturally responsive knowledge and skills in science and mathematics teaching.
Effective population size over a generation (Ne) or over a reproductive cycle (Nb) and the adult census size (Nc) are important parameters in both conservation and evolutionary biology. Ne provides information regarding the rate of loss of genetic diversity and can be tracked back in time to infer demographic history of populations, whereas Nb may often be more easily quantified than Nc for short-term abundance monitoring. In this study, we propose (1) an empirical context to Waples et al. (2014) who introduced a correction to bias due to overlapping generations, and (2) a mathematical relationship between Ne and Nb for direct application in Atlantic salmon populations in Québec, Canada. To achieve this, we investigate the relationships between Ne, Nb and Nc in 10 Atlantic salmon populations, Canada, for which we genotyped 100 randomly sampled young-of-the year individuals for 5 consecutive years. The results show a positive correlation between Ne, Nb and Nc, suggesting that Nb is an indicative parameter for tracking effective population size and abundance of Atlantic salmon. However, our model allows predicting Nc from Nb values at 27% that can be partly explained by high variance in Nb/Nc both among populations (37%) and among years (19%). This result illustrates the need for thorough calibration of Nb/Nc before using Nb in monitoring programs, as well as a full understanding of the limits of such an approach. Finally, we discuss the importance of these results for the management of wild populations.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.