The COVID-19 pandemic has generated the need to evolve health services to reduce the risk of contagion and promote a collaborative environment even remotely. Advances in Industry 4.0, including the internet of things, mobile networks, cloud computing, and artificial intelligence make Health 4.0 possible to connect patients with healthcare professionals. Hence, the focus of this work is analyzing the potentiality, and challenges of state-of-the-art Health 4.0 applications to face the COVID-19 pandemic including augmented environments, diagnosis of the virus, forecasts, medical robotics, and remote clinical services. It is concluded that Health 4.0 can be applied in the prevention of contagion, improve diagnosis, promote virtual learning environments, and offer remote services. However, there are still ethical, technical, security, and legal challenges to be addressed. Additionally, more imaging datasets for COVID-19 detection need to be made available to the scientific community. Working in the areas of opportunity will help to address the new normal. Likewise, Health 4.0 can be applied not only in the COVID-19 pandemic, but also in future global viruses and natural disasters.
Conventional aquaculture (ACUA-C) in Mexico is an activity that maintains an annual growth rate of 6%. Tilapia (Oreochromis niloticus) aquaculture is the predominant aquaculture in the country with 4623 farms, most of which operate with semi-intensive (SIS) and extensive (ES) production systems, discharging untreated wastewater that negatively impacts the environment. To address this problem, new ecotechnologies such as biofloc (BFT), recirculation systems for aquaculture (RAS), constructed wetlands (CWs) for water treatment, and aquaponics (AS) have emerged to mitigate the environmental impacts of untreated wastewater. The objective of this work is to evaluate the feasibility of tilapia farming with BFT, RAS, CW, and AS ecotechnologies through an economic and financial feasibility analysis, considering their environmental and social implications in a Mexican aquaculture farm located in the state of Veracruz. Open interviews, direct observation, and diagnosis of the semi-intensive tilapia system was carried out between 15 May 2019 and 15 February 2020 in order to calculate, design, and theoretically evaluate the four ecotechnological alternatives (TBF, RAS, CW, and AS). Economic (13), environmental (10), and social (5) variables were applied, making use of the same facilities. The results reveal that the four ecotechnologies implemented in an SIS are economically viable and environmentally acceptable, especially in water management, in addition to being socially feasible. It is concluded that BFT offers an alternative to the producer by having a lower additional cost to improve problems, despite the possible complexity of operation and energy requirements to manage wastewater treatment. The technological transition to BFT is recommended to solve the problem of sustainable water management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.