Gutmann–Beckett-type measurements with phosphine oxide probes can be used to estimate effective Lewis acidity with 31P nuclear magnetic resonance spectroscopy, but the influence of the molecular structure of a given probe on the quantification of Lewis acidity remains poorly documented in experimental work. Here, a quantitative comparison of triethyl (E), trioctyl (O), and triphenyl (P) phosphine oxides as molecular probes of Lewis acidity has been carried out via titration studies in MeCN with a test set of six mono- and divalent metal triflate salts. In comparison to E, the bulkier O displays a similar range of chemical shift values and binding affinities for the various test metal ions. Spectral linewidths and speciation properties vary for individual cation-to-probe ratios, however, confirming probe-specific properties that can impact the data quality. Importantly, P displays a consistently narrower dynamic range than both E and O, illustrating how electronic changes at phosphorus can influence the NMR response. Comparative parametrizations of the effective Lewis acidities of a broader range of metal ions, including the trivalent rare earth ions Y3+, Lu3+, and Sc3+ as well as the uranyl ion (UO2 2+), can be understood in light of these results, providing insight into the fundamental chemical processes underlying the useful approach of single-point measurements for quantification of effective Lewis acidity. Together with a study of counteranion effects reported here, these data clarify the diverse ensemble of factors that can influence the measurement of Lewis acid/base interactions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.