Different separated protein fractions by the electrophoretic method in polyacrylamide gel were used to classify two different types of honeys, Galician honeys and commercial honeys produced and packaged outside of Galicia. Random forest, artificial neural network, and support vector machine models were tested to differentiate Galician honeys and other commercial honeys produced and packaged outside of Galicia. The results obtained for the best random forest model allowed us to determine the origin of honeys with an accuracy of 95.2%. The random forest model, and the other developed models, could be improved with the inclusion of new data from different commercial honeys.
Different prediction models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to model the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best model was checked in two independent stations. The results obtained confirmed that the best methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 1226 kJ/(m2∙day) and 1136 kJ/(m2∙day), respectively, and predict conveniently for independent stations, 2013 kJ/(m2∙day) and 2094 kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.
Different machine learning models (multiple linear regression, vector support machines, artificial neural networks and random forests) are applied to predict the monthly global irradiation (MGI) from different input variables (latitude, longitude and altitude of meteorological station, month, average temperatures, among others) of different areas of Galicia (Spain). The models were trained, validated and queried using data from three stations, and each best machine model was checked in two independent stations. The results obtained confirmed that the best ML methodology is the ANN model which presents the lowest RMSE value in the validation and querying phases 122.6·10kJ/(m2∙day) and 113.6·10kJ/(m2∙day), respectively, and predict conveniently for independent stations, 201.3·10kJ/(m2∙day) and 209.4·10kJ/(m2∙day), respectively. Given the good results obtained, it is convenient to continue with the design of artificial neural networks applied to the analysis of monthly global irradiation.
Two types of predictive models based on artificial neural networks (ANN) and quadratic regression model developed in our laboratory will be summarized in this book chapter. Both models were developed to predict the density, speed of sound, kinematic viscosity and surface tension of amphiphilic aqueous solutions. These models were developed taking into account the concentration, the number of carbons and the molecular weight values. The experimental data were compiled from literature and included different surfactants: i) hexyl, ii) octyl, iii) decyl, iv) tetradecyl and v) octadecyl trimethyl ammonium bromide. Neural models present better adjustment values, with R2 values above 0.902 and AAPD values under 2.93% (for all data), than the quadratic regression models. Finally, it is concluded that the quadratic regression and the neural models can be powerful prediction tools for the physical properties of surfactants aqueous solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.