Despite fast advances in genomics and proteomics, monoclonal antibodies (mAbs) are still a valuable tool for areas such as the evolution of basic research in stem cells and cancer, for immunophenotyping cell populations, diagnosing and prognosis of diseases, and for immunotherapy. To summarize different subtractive immunization approaches successfully used for the production of highly specific antibodies, we identified scientific articles in NCBI PubMed using the following search terms: subtractive immunization, monoclonal antibody, tolerization, neonatal, high-zone tolerance, masking immunization. Patent records were also consulted. From the list of results, we included all available reports, from 1985 to present, that used any enhanced immunization technique to produce either polyclonal or monoclonal antibodies. Our examination yielded direct evidence that these enhanced immunization techniques are efficient in obtaining specific antibodies to rare epitopes, with different applications, such as to identify food contaminants or tumor cells.
We report an immunization technique that can update the production of monoclonal antibodies (mAbs): the multiple tolerization subtractive immunization (MTSI). A total of 10 BALB/C mice were used. Animals in group 1 received one inoculation of RWPE-1 cells (nontumoral), followed by cyclophosphamide, and then received serial inoculations of nonirradiated PC3 cells (tumoral). Animals in group 2 received our MTSI protocol, as follows: one inoculation of RWPE-1 cells, followed by cyclophosphamide (Cy). This whole tolerization step was repeated three other times, with 14-day intervals between the last Cy exposure and the next RWPE-1 cell inoculation. Finally, the animals received the same nonirradiated PC3 cell exposure as group 1. Blood was taken from each animal, and their polyclonal sera individually tested against the nontumoral RWPE-1 cells in flow cytometry. We found out that, after the MTSI was employed, the serum of the immunized animals, in group 2, contained considerably less antibodies that reacted against the tolerogenic cells, compared with the serum of the animals that underwent regular subtractive immunization. We showed that, by repeating the tolerization cycles, the polyclonal antibodies produced by mice have a reduced specificity toward common/immunodominant epitopes present at nontumoral cells, and thus this technique can be readily used by others in studies involving murine mAb protocols.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.