Magnesium plays an important role in many physiological functions. Habitually low intakes of magnesium and in general the deficiency of this micronutrient induce changes in biochemical pathways that can increase the risk of illness and, in particular, chronic degenerative diseases. The assessment of magnesium status is consequently of great importance, however, its evaluation is difficult. The measurement of serum magnesium concentration is the most commonly used and readily available method for assessing magnesium status, even if serum levels have no reliable correlation with total body magnesium levels or concentrations in specific tissues. Therefore, this review offers an overview of recent insights into magnesium from multiple perspectives. Starting from a biochemical point of view, it aims at highlighting the risk due to insufficient uptake (frequently due to the low content of magnesium in the modern western diet), at suggesting strategies to reach the recommended dietary reference values, and at focusing on the importance of detecting physiological or pathological levels of magnesium in various body districts, in order to counteract the social impact of diseases linked to magnesium deficiency.
Traumatic brain injury (TBI) represents one of the major causes of mortality and disability in the world. TBI is characterized by primary damage resulting from the mechanical forces applied to the head as a direct result of the trauma and by the subsequent secondary injury due to a complex cascade of biochemical events that eventually lead to neuronal cell death. Oxidative stress plays a pivotal role in the genesis of the delayed harmful effects contributing to permanent damage. NADPH oxidases (Nox), ubiquitary membrane multisubunit enzymes whose unique function is the production of reactive oxygen species (ROS), have been shown to be a major source of ROS in the brain and to be involved in several neurological diseases. Emerging evidence demonstrates that Nox is upregulated after TBI, suggesting Nox critical role in the onset and development of this pathology. In this review, we summarize the current evidence about the role of Nox enzymes in the pathophysiology of TBI.
Among health-promoting phytochemicals in whole grains, phenolic compounds have gained attention as they have strong antioxidant properties and can protect against many degenerative diseases. Aim of this study was to profile grain phenolic extracts of one modern and five old common wheat (Triticum aestivum L.) varieties and to evaluate their potential antiproliferative or cytoprotective effect in different cell culture systems.Wheat extracts were characterized in terms of antioxidant activity and phenolic composition (HPLC/ESI-TOF-MS profile, polyphenol and flavonoid contents). Results showed that antioxidant activity (FRAP and DPPH) is mostly influenced by flavonoid (both bound and free) content and by the ratio flavonoids/polyphenols. Using a leukemic cell line, HL60, and primary cultures of neonatal rat cardiomyocytes, the potential antiproliferative or cytoprotective effects of different wheat genotypes were evaluated in terms of intracellular reactive oxygen species levels and cell viability. All tested wheat phenolic extracts exerted dose-dependent cytoprotective and antiproliferative effects on cardiomyocytes and HL60 cells, respectively. Due to the peculiar phenolic pattern of each wheat variety, a significant genotype effect was highlighted. On the whole, the most relevant scavenging effect was found for the old variety Verna. No significant differences in terms of anti-proliferative activities among wheat genotypes was observed. Results reported in this study evidenced a correspondence between the in vitro antioxidant activity and potential healthy properties of different extracts. This suggests that an increased intake of wheat grain derived products could represent an effective strategy to achieve both chemoprevention and protection against oxidative stress related diseases.
In the last decade, the generation and the role of reactive oxygen species (ROS), particularly hydrogen peroxide, in cell signalling transduction pathways have been intensively studied, and it is now clear that an increase of ROS level affects cellular growth and proliferation pathways related to cancer development. Hydrogen peroxide (H2O2) has been long thought to permeate biological membranes by simple diffusion since recent evidence challenged this notion disclosing the role of aquaporin water channels (AQP) in mediating H2O2 transport across plasma membranes. We previously demonstrated that NAD(P)H oxidase (Nox)-generated ROS sustain glucose uptake and cellular proliferation in leukaemia cells. The aim of this study was to assess whether specific AQP isoforms can channel Nox-produced H2O2 across the plasma membrane of leukaemia cells affecting downstream pathways linked to cell proliferation. In this work, we demonstrate that AQP inhibition caused a decrease in intracellular ROS accumulation in leukaemia cells both when H2O2 was produced by Nox enzymes and when it was exogenously added. Furthermore, AQP8 overexpression or silencing resulted to modulate VEGF capacity of triggering an H2O2 intracellular level increase or decrease, respectively. Finally, we report that AQP8 is capable of increasing H2O2-induced phosphorylation of both PI3K and p38 MAPK and that AQP8 expression affected positively cell proliferation. Taken together, the results here reported indicate that AQP8 is able to modulate H2O2 transport through the plasma membrane affecting redox signalling linked to leukaemia cell proliferation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.