Peroxisome proliferation has been induced with 2-methyl-2-(p-[l,2,3,4-tetrahydro-l-naphthyl]-phenoxy)-propionic acid (Su-13437). DNA, protein, cytochrome oxidase, glucose-6-phosphatase, and acid phosphatase concentrations remain almost constant. Peroxisomal enzyme activities change to approximately 165%, 50% 30% and 0% of the controls for catalase, urate oxidase, L-a-hydroxy acid oxidase, and D-amino acid oxidase, respectively. For catalase the change results from a decrease in particle-bound activity and a fivefold increase in soluble activity. The average diameter of peroxisome sections is 0.58 • 0.15 tzm in controls and 0.73 • 0.25 ~tm after treatment. Therefore, the measured peroxisomal enzymes are highly diluted in proliferated particles.After tissue fractionation, approximately one-half of the normal peroxisomes and all proliferated peroxisomes show matric extraction with ghost formation, but no change in size. In homogenates submitted to mechanical stress, proliferated peroxisomes do not reveal increased fragility; unexpectedly, Su-13437 stabilizes lysosomes. Our results suggest that matrix extraction and increased soluble enzyme activities result from transmembrane passage of peroxisomal proteins.The changes in concentration of peroxisomal oxidases and soluble catalase after Su-13437 allow the calculation of their half-lives. These are the same as those found for total catalase, in normal and treated rats, after allyl isopropyl acetamide: about 1.3 days, a result compatible with peroxisome degradation by autophagy. A sequential increase in liver RNA concentration, [l~C]leucine incorporation into DOC-soluble proteins and into immunoprecipitable catalase, and an increase in liver size and peroxisomal volume per gram liver, characterize the trophic effect of the drug used. In males, Su-13437 is more active than CPIB, another peroxisome proliferation-inducing drug; in females, only Su-13437 is active.Peroxisomes are cell organelles, widely distributed in eucaryotic cells, whose function is partially known only in protists (48) and plants (6,29,59). Their role in animal tissues is not known, in spite of the various physical, morphological, and biochemical analyses to which they have been subjected (2,16,31,42,43). Most of the work has concentrated on rat liver peroxisomes, but their set
The mechanisms of peroxisomal biogenesis remain incompletely understood, specially regarding the role of the endoplasmic reticulum (ER) in human cells, where genetic disorders of peroxisome biogenesis lead to Zellweger syndrome (ZS). The Pex3p peroxisomal membrane protein (PMP) required for early steps of peroxisome biogenesis has been detected in the ER in yeast but not in mammalian cells. Here, we show that Pex3p-GFP expressed in a new ZS cell line (MR), which lacks peroxisomes due to a mutation in the PEX3 gene, localizes first in the ER and subsequently in newly formed peroxisomes. Pex3p bearing an artificial N-glycosylation site shows an electrophoretic shift indicative of ER targeting while en route to preformed peroxisomes in normal fibroblast. A signal peptide that forces its entry into the ER does not eliminate its capability to drive peroxisome biogenesis in ZS cells. Thus, Pex3p is able to drive peroxisome biogenesis from the ER and its ER pathway is not privative of ZS cells. Cross-expression experiments of Pex3p in GM623 cells lacking Pex16p or Pex16p in MR cells lacking Pex3p, showed evidence that Pex3p requires Pex16p for ER location but is dispensable for the ER location of Pex16p. These results indicate that Pex3p follows the ER-to-peroxisomal route in mammalian cells and provides new clues to understand its function.
Hepatic ischemia-reperfusion (I-R) injury frequently is associated with cholestasis. However, the underlying mechanisms are not fully understood. The aim of the study is to assess bile secretory function in vivo in rats subjected to warm lobar hepatic ischemia at different times during reperfusion. A model of lobar 70% warm hepatic ischemia for 30 minutes was used with studies conducted at 1 and 6 hours and 1, 3, and 7 days after reperfusion. Bile secretory function was assessed after selective cannulation of bile ducts of ischemic (ILs) and nonischemic lobes (NILs). Serum activity of hepatic alanine and aspartate aminotransferase was slightly increased in rats subjected to I-R, whereas serum bile salt levels increased early during reperfusion, returning to control values after 7 days. ILs showed mild reversible leukocyte infiltration and no significant necrosis. Bile flow and bile salt excretion were significantly decreased in ILs during the first 24-hour reperfusion period compared with shamoperated rats and NILs. A marked reduction in glutathione (GSH) excretion occurred at 1 and 6 hours and 1 and 3 days, which returned to control values after 7 days. Total GSH and both reduced and oxidized GSH levels in liver homogenate and arterial blood GSH levels were unchanged at all times. Protein mass of multidrug resistance protein 2 and its function, assessed by the hepatic maximum secretory rate of ceftriaxone, did not show significant changes in ILs or NILs compared with shamoperated rats. Liver tissue ␥-glutamyl transpeptidase (GGT) and ␥-glutamylcysteine synthetase activities remained unchanged, whereas biliary GGT and cysteine secretory rates were significantly increased in ILs and NILs. Administration of acivicin, a GGT inhibitor, resulted in decreased secretion of this enzyme into bile and a parallel marked increase in biliary GSH secretion compared with untreated ischemic rats. In conclusion, warm hepatic I-R induces reversible cholestatic changes in ILs. GSH secretory rates from both ILs and NILs were markedly decreased during reperfusion. The reversibility of this effect after GGT inhibition, as well as increased release of active GGT into bile and cysteine biliary secretory rates, suggest increased GSH degradation in bile. These findings might be relevant for the I-R-induced clinical cholestasis, as well as cholangiocyte injury, seen after hepatic ischemia. (Liver Transpl 2003;9:1199-1210.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.