Abstract. The complete data fusion (CDF) method is applied to ozone profiles obtained from simulated measurements in the ultraviolet and in the thermal infrared in the framework of the Sentinel 4 mission of the Copernicus programme. We observe that the quality of the fused products is degraded when the fusing profiles are either retrieved on different vertical grids or referred to different true profiles. To address this shortcoming, a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors, is presented. This upgrade overcomes the encountered problems and provides products of good quality when the fusing profiles are both retrieved on different vertical grids and referred to different true profiles. The impact of the interpolation and coincidence errors on number of degrees of freedom and errors of the fused profile is also analysed. The approach developed here to account for the interpolation and coincidence errors can also be followed to include other error components, such as forward model errors.
Surface reflectance has a central role in the analysis of land surface for a broad variety of Earth System studies. An accurate atmospheric correction, obtained by an appropriate selection of aerosol model, is the first requirement for reliable surface reflectance estimation. In the aerosol model, the type is defined by the physical and chemical properties, while the loading is usually described by the optical thickness at 550 nm. The aim of this work is to evaluate the radiative impact of the aerosol model on the surface reflectance obtained from Compact High Resolution Imaging Spectrometer (CHRIS) hyperspectral data over land by using the specifically developed algorithm CHRIS Atmospherically Corrected Reflectance
OPEN ACCESSRemote Sens. 2015, 7 8392 Imagery (CHRIS@CRI) based on the 6SV radiative transfer model. We employed five different aerosol models: one provided by the AERONET inversion products (used as reference), three standard aerosol models in 6SV, and one obtained from the output of the GEOS-Chem global chemistry-transport model (CTM). The results obtained for the two case studies selected over Benelux show that in the absence of AERONET data on the scene, the best performing aerosol model is the one derived from CTM output.
With the launch of the Sentinel-5 Precursor (S-5P, lifted-off on 13 October 2017), Sentinel-4 (S-4) and Sentinel-5 (S-5)(from 2021 and 2023 onwards, respectively) operational missions of the ESA/EU Copernicus program, a massive amount of atmospheric composition data with unprecedented quality will become available from geostationary (GEO) and low Earth orbit (LEO) observations. Enhanced observational capabilities are expected to foster deeper insight than ever before on key issues relevant for air quality, stratospheric ozone, solar radiation, and climate. A major potential strength of the Sentinel observations lies in the exploitation of complementary information that originates from simultaneous and independent satellite measurements of the same air mass. The core purpose of the AURORA (Advanced Ultraviolet Radiation and Ozone Retrieval for Applications) project is to investigate this exploitation from a novel approach for merging data acquired in different spectral regions from on board the GEO and LEO platforms. A data processing chain is implemented and tested on synthetic observations. A new data algorithm combines the ultraviolet, visible and thermal infrared ozone products into S-4 and S-5(P) fused profiles. These fused products are then ingested into state-of-the-art data assimilation systems to obtain a unique ozone profile in analyses and forecasts mode. A comparative evaluation and validation of fused products assimilation versus the assimilation of the operational products will seek to demonstrate the improvements achieved by the proposed approach. This contribution provides a first general overview of the project, and discusses both the challenges of developing a technological infrastructure for implementing the AURORA concept, and the potential for applications of AURORA derived products, such as tropospheric ozone and UV surface radiation, in sectors such as air quality monitoring and health.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.