ObjectiveEndoC-βH5 is a newly established human beta-cell model which may be superior to previous model systems. Exposure of beta cells to pro-inflammatory cytokines is widely used when studying immune-mediated beta-cell failure in type 1 diabetes. We therefore performed an in-depth characterization of the effects of cytokines on EndoC-βH5 cells.MethodsThe sensitivity profile of EndoC-βH5 cells to the toxic effects of interleukin-1β (IL-1β), interferon γ (IFNγ) and tumor necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase-3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Activation of signaling pathways and major histocompatibility complex (MHC)-I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Insulin and chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Mitochondrial function was evaluated by extracellular flux technology. Global gene expression was characterized by stranded RNA sequencing.ResultsCytokines increased caspase-3/7 activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ signal transduction. Cytokine exposure induced MHC-I expression and chemokine production and secretion. Further, cytokines caused impaired mitochondrial function and diminished glucose-stimulated insulin secretion. Finally, we report significant changes to the EndoC-βH5 transcriptome including upregulation of the human leukocyte antigen (HLA) genes, endoplasmic reticulum stress markers, and non-coding RNAs, in response to cytokines. Among the differentially expressed genes were several type 1 diabetes risk genes.ConclusionOur study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This information should be useful for future studies using this novel beta-cell model.
Objective: EndoC-βH5 is a newly established human beta-cell model which may be superior to previous models of native human beta cells. Exposure of beta cells to proinflammatory cytokines is a widely used in vitro model of immune-mediated beta-cell failure in type 1 diabetes and we therefore performed an in-depth characterisation of the effects of cytokines on EndoC-βH5 cells. Methods: The sensitivity profile of EndoC-βH5 cells to the toxic effects of the pro-inflammatory cytokines interleukin-1β (IL-1β), interferon γ (IFNγ) and tumour necrosis factor-α (TNFα) was examined in titration and time-course experiments. Cell death was evaluated by caspase 3/7 activity, cytotoxicity, viability, TUNEL assay and immunoblotting. Mitochondrial function was evaluated by extracellular flux technology. Activation of signalling pathways and major histocompatibility complex (MHC) class I expression were examined by immunoblotting, immunofluorescence, and real-time quantitative PCR (qPCR). Glucose-stimulated insulin secretion (GSIS) and cytokine-induced chemokine secretion were measured by ELISA and Meso Scale Discovery multiplexing electrochemiluminescence, respectively. Global gene expression was characterised by stranded RNA sequencing. Results: Cytokines increased caspase activity and cytotoxicity in EndoC-βH5 cells in a time- and dose-dependent manner. The proapoptotic effect of cytokines was primarily driven by IFNγ. Cytokine exposure caused impaired mitochondrial function, diminished GSIS, and induced secretion of chemokines. At the signalling level, cytokines increased the phosphorylation of signal transducer and activator of transcription 1 (STAT1) but not c-jun N-terminal kinase (JNK) and did not cause degradation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor α (IκBα). MHC class I was induced by cytokines. Cytokine exposure caused significant changes to the EndoC-βH5 transcriptome including upregulation of HLA genes, endoplasmic reticulum stress markers, and non-coding RNAs. Among the differentially expressed genes were several type 1 diabetes risk genes. Conclusions: Our study provides detailed insight into the functional and transcriptomic effects of cytokines on EndoC-βH5 cells. This knowledge will be helpful for future investigations studying cytokine effects in this cell model.
Background: Ulcerative colitis (UC) is a disorder with unknown etiology, and animal models play an essential role in studying its molecular pathophysiology. Here, we aim to identify common conserved pathological UC-related gene expression signatures between humans and mice that can be used as treatment targets and/or biomarker candidates.Methods: To identify differentially regulated protein-coding genes and non-coding RNAs, we sequenced total RNA from the colon and blood of the most widely used dextran sodium sulfate Ulcerative colitis mouse. By combining this with public human Ulcerative colitis data, we investigated conserved gene expression signatures and pathways/biological processes through which these genes may contribute to disease development/progression.Results: Cross-species integration of human and mouse Ulcerative colitis data resulted in the identification of 1442 genes that were significantly differentially regulated in the same direction in the colon and 157 in blood. Of these, 51 genes showed consistent differential regulation in the colon and blood. Less known genes with importance in disease pathogenesis, including SPI1, FPR2, TYROBP, CKAP4, MCEMP1, ADGRG3, SLC11A1, and SELPLG, were identified through network centrality ranking and validated in independent human and mouse cohorts.Conclusion: The identified Ulcerative colitis conserved transcriptional signatures aid in the disease phenotyping and future treatment decisions, drug discovery, and clinical trial design.
1.AbstractBACKGROUND & AIMSUlcerative colitis (UC) is an inflammatory bowel disorder with unknown etiology. Given its complex nature, in vivo studies to investigate its pathophysiology is vital. Animal models play an important role in molecular profiling necessary to pinpoint mechanisms that contribute to human disease. Thus, we aim to identify common conserved gene expression signatures and differentially regulated pathways between human UC and a mouse model hereof, which can be used to identify UC patients from healthy individuals and to suggest novel treatment targets and biomarker candidates.METHODSTherefore, we performed high-throughput total and small RNA sequencing to comprehensively characterize the transcriptome landscape of the most widely used UC mouse model, the dextran sodium sulfate (DSS) model. We used this data in conjunction with publicly available human UC transcriptome data to compare gene expression profiles and pathways.RESULTSWe identified differentially regulated protein-coding genes, long non-coding RNAs and microRNAs from colon and blood of UC mice and further characterized the involved pathways and biological processes through which these genes may contribute to disease development and progression. By integrating human and mouse UC datasets, we suggest a set of 51 differentially regulated genes in UC colon and blood that may improve molecular phenotyping, aid in treatment decisions, drug discovery and the design of clinical trials.CONCLUSIONGlobal transcriptome analysis of the DSS-UC mouse model supports its use as an efficient high-throughput tool to discover new targets for therapeutic and diagnostic applications in human UC through identifying relationships between gene expression and disease phenotype.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.