Co-amorphous systems have been shown to be a promising strategy to address the poor water solubility of many drug candidates. However, little is known about the effect of downstream processing-induced stress on these systems. The aim of this study is to investigate the compaction properties of co-amorphous materials and their solid-state stability upon compaction. Model systems of co-amorphous materials consisting of carvedilol and the two co-formers aspartic acid and tryptophan were produced via spray drying. The solid state of matter was characterized using XRPD, DSC, and SEM. Co-amorphous tablets were produced with a compaction simulator, using varying amounts of MCC in the range of 24 to 95.5% (w/w) as a filler, and showed high compressibility. Higher contents of co-amorphous material led to an increase in the disintegration time; however, the tensile strength remained rather constant at around 3.8 MPa. No indication of recrystallization of the co-amorphous systems was observed. This study found that co-amorphous systems are able to deform plastically under pressure and form mechanically stable tablets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.