When we walk in a challenging environment, we use visual information to modify our gait and place our feet carefully on the ground. Here, we explored how central common drive to ankle muscles changes in relation to visually guided foot placement. Sixteen healthy adults aged 23 ± 5 years participated in the study. Electromyography (EMG) from the Soleus (Sol), medial Gastrocnemius (MG), and the distal and proximal ends of the Tibialis anterior (TA) muscles and electroencephalography (EEG) from Cz were recorded while subjects walked on a motorized treadmill. A visually guided walking task, where subjects received visual feedback of their foot placement on a screen in real‐time and were required to place their feet within narrow preset target areas, was compared to normal walking. There was a significant increase in the central common drive estimated by TA‐TA and Sol‐MG EMG‐EMG coherence in beta and gamma frequencies during the visually guided walking compared to normal walking. EEG‐TA EMG coherence also increased, but the group average did not reach statistical significance. The results indicate that the corticospinal tract is involved in modifying gait when visually guided placement of the foot is required. These findings are important for our basic understanding of the central control of human bipedal gait and for the design of rehabilitation interventions for gait function following central motor lesions.
In adults, oscillatory activity in the sensorimotor cortex is coherent with contralateral muscle activity at beta frequencies (15-35 Hz) during tonic contraction. This functional coupling reflects the involvement of the sensorimotor cortex, the corticospinal pathway, and likely also ascending sensory feedback in the task at hand. However, little is known about the development of task-related sensorimotor connectivity during childhood and adolescence. To address this, we recorded electroencephalography (EEG) from the vertex (Cz) and electromyography (EMG) from ankle muscles (proximal and distal anterior tibial, TA; soleus, SOL; gastrocnemius medialis, GM) in 33 participants aged 7-23 yr during tonic dorsi-and plantar flexion requiring precise maintenance of a submaximal torque level. Coherence was calculated for Cz-TA, Cz-SOL, TA-TA, and SOL-GM signal pairs. We found strong, positive associations between age and beta band coherence for Cz-TA, Cz-SOL, and TA-TA, suggesting that oscillatory corticomuscular connectivity is strengthened during childhood development and adolescence. Directionality analysis indicated that the primary interaction underlying this age-related increase was in the descending direction. In addition, performance during dorsi-and plantar flexion tasks was positively associated with age, indicating more precise control of the ankle joint in older participants. Performance during dorsi-and plantar flexion was also associated with beta band coherence, suggesting that participants with greater beta band coherence also exhibited greater precision. We propose that these results indicate an age-related increase in oscillatory corticospinal input to the ankle muscle motoneuron pools during childhood development and adolescence, with possible implications for maturation of precision force control.Within the theoretical framework of predictive coding, we suggest that our results may reflect an agerelated increase in reliance on feedforward control as the developing nervous system becomes better at predicting the sensory consequences of movement. These findings may contribute to the development of novel intervention strategies targeting improved sensorimotor control in children and adolescents with central motor disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.