Notosuchians are an extinct clade of terrestrial crocodyliforms with a particularly rich record in the late Early to Late Cretaceous (approx. 130–66 Ma) of Gondwana. Although much of this diversity comes from South America, Africa and Indo-Madagascar have also yielded numerous notosuchian remains. Three notosuchian species are currently recognized from the early Late Cretaceous (approx. 100 Ma) Kem Kem Group of Morocco, including the peirosaurid Hamadasuchus rebouli . Here, we describe two new specimens that demonstrate the presence of at least a fourth notosuchian species in this fauna. Antaeusuchus taouzensis n. gen. n. sp. is incorporated into one of the largest notosuchian-focused character-taxon matrices yet to be compiled, comprising 443 characters scored for 63 notosuchian species, with an increased sampling of African and peirosaurid species. Parsimony analyses run under equal and extended implied weighting consistently recover Antaeusuchus as a peirosaurid notosuchian, supported by the presence of two distinct waves on the dorsal dentary surface, a surangular which laterally overlaps the dentary above the mandibular fenestra, and a relatively broad mandibular symphysis. Within Peirosauridae, Antaeusuchus is recovered as the sister taxon of Hamadasuchus . However, it differs from Hamadasuchus with respect to several features, including the ornamentation of the lateral surface of the mandible, the angle of divergence of the mandibular rami, the texture of tooth enamel and the shape of the teeth, supporting their generic distinction. We present a critical reappraisal of the non-South American Gondwanan notosuchian record, which spans the Middle Jurassic–late Eocene. This review, as well as our phylogenetic analyses, indicate the existence of at least three approximately contemporaneous peirosaurid lineages within the Kem Kem Group, alongside other notosuchians, and support the peirosaurid affinities of the ‘trematochampsid’ Miadanasuchus oblita from the Maastrichtian of Madagascar. Furthermore, the Cretaceous record demonstrates the presence of multiple lineages of approximately contemporaneous notosuchians in several African and Madagascan faunas, and supports previous suggestions regarding an undocumented pre-Aptian radiation of Notosuchia. By contrast, the post-Cretaceous record is depauperate, comprising rare occurrences of sebecosuchians in north Africa prior to their extirpation.
Type species. Melitosaurus champsoides Owen, 1849Holotype. NHMUK PV OR41151: anterior portion of a longirostrine rostrum, comprising the premaxillae and the anterior sections of the maxillae, nasals, and dentaries (Figs 2-4). A left dentary fragment from an indeterminate position in the mandible is also preserved (Fig. 4).Locality and horizon. Gozo Island, Malta; carbonate bed containing phosphate nodules within the Middle Globigerina Limestone Member; middle-upper Burdigalian (~19-16 Ma).
Despite being globally widespread and abundant throughout much of the
1. The open-source programming language ‘R’ has become a standard tool in the palaeobiologist’s toolkit. Its popularity within the palaeobiology community continues to grow, with published articles increasingly citing the usage of R and R packages. However, there are currently a lack of agreed standards for data preparation and available frameworks to support implementation of such standards. Consequently, data preparation workflows are often unclear and not reproducible, even when code is provided. Moreover, due to a lack of code accessibility and documentation, palaeobiologists are often forced to ‘reinvent the wheel’ to find solutions to issues already solved by other members of the community.2. Here, we introduce palaeoverse, a community-driven R package to aid data preparation and exploration for quantitative palaeobiological research. The package is freely available and has three core principles: (1) streamline data preparation and analyses; (2) enhance code readability; and (3) improve reproducibility of results. To develop these aims, we assessed the analytical needs of the broader palaeobiological community using an online survey, in addition to incorporating our own experiences.3. In this work, we first report the findings of the survey which shaped the development of the package. Subsequently, we describe and demonstrate the functionality available in palaeoverse and provide usage examples. Finally, we discuss the resources we have made available for the community and the future plans for the broader palaeoverse project.4. palaeoverse is the first community-driven R package in palaeobiology, developed with the intention of bringing palaeobiologists together to establish agreed standards for high-quality quantitative research. The package provides a user-friendly platform for preparing data for analysis with well-documented open-source code to enhance transparency. The functionality available in palaeoverse improves code reproducibility and accessibility, which is beneficial for both the review process and future research.
The open‐source programming language ‘R' has become a standard tool in the palaeobiologist's toolkit. Its popularity within the palaeobiological community continues to grow, with published articles increasingly citing the usage of R and R packages. However, there are currently a lack of agreed standards for data preparation and available frameworks to support the implementation of such standards. Consequently, data preparation workflows are often unclear and not reproducible, even when code is provided. Moreover, due to a lack of code accessibility and documentation, palaeobiologists are often forced to ‘reinvent the wheel’ to find solutions to issues already solved by other members of the community. Here, we introduce palaeoverse, a community‐driven R package to aid data preparation and exploration for quantitative palaeobiological research. The package is freely available and has three core principles: (1) streamline data preparation and analyses; (2) enhance code readability; and (3) improve reproducibility of results. To develop these aims, we assessed the analytical needs of the broader palaeobiological community using an online survey, in addition to incorporating our own experiences. In this work, we first report the findings of the survey, which shaped the development of the package. Subsequently, we describe and demonstrate the functionality available in palaeoverse and provide usage examples. Finally, we discuss the resources we have made available for the community and our future plans for the broader Palaeoverse project. palaeoverse is a community‐driven R package for palaeobiology, developed with the intention of bringing palaeobiologists together to establish agreed standards for high‐quality quantitative research. The package provides a user‐friendly platform for preparing data for analysis with well‐documented open‐source code to enhance transparency. The functionality available in palaeoverse improves code reproducibility and accessibility, which is beneficial for both the review process and future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.