Retracing the evolutionary history of arthropods has been one of the greatest challenges in biology. During the past decade, phylogenetic analyses of morphological and molecular data have coalesced towards the conclusion that Mandibulata, the most diverse and abundant group of animals, is a distinct clade from Chelicerata, in that its members possess post-oral head appendages specialized for food processing, notably the mandible. The origin of the mandibulate body plan, however, which encompasses myriapods, crustaceans and hexapods, has remained poorly documented. Here we show that Tokummia katalepsis gen. et sp. nov., a large bivalved arthropod from the 508 million-year-old Marble Canyon fossil deposit (Burgess Shale, British Columbia), has unequivocal mandibulate synapomorphies, including mandibles and maxillipeds, as well as characters typically found in crustaceans, such as enditic, subdivided basipods and ring-shaped trunk segments. Tokummia and its closest relative, Branchiocaris (in Protocarididae, emended), also have an anteriormost structure housing a probable bilobed organ, which could support the appendicular origin of the labrum. Protocaridids are retrieved with Canadaspis and Odaraia (in Hymenocarina, emended) as part of an expanded mandibulate clade, refuting the idea that these problematic bivalved taxa, as well as other related forms, are representatives of the basalmost euarthropods. Hymenocarines now illustrate that the subdivision of the basipod and the presence of proximal endites are likely to have been ancestral conditions critical for the evolution of coxal and pre-coxal features in mandibulates. The presence of crustaceomorph traits in the Cambrian larvae of various clades basal to Mandibulata is reinterpreted as evidence for the existence of distinct ontogenetic niches among stem arthropods. Larvae would therefore have constituted an important source of morphological novelty during the Cambrian period, and, through heterochronic processes, may have contributed to the rapid acquisition of crown-group characters and thus to greater evolutionary rates during the early radiation of euarthropods.
Waptia fieldensis Walcott, 1912 is one of the iconic animals from the middle Cambrian Burgess Shale biota that had lacked a formal description since its discovery at the beginning of the twentieth century. This study, based on over 1800 specimens, finds that W. fieldensis shares general characteristics with pancrustaceans, as previous authors had suggested based mostly on its overall aspect. The cephalothorax is covered by a flexible, bivalved carapace and houses a pair of long multisegmented antennules, palp-bearing mandibles, maxillules, and four pairs of appendages with five-segmented endopods—the anterior three pairs with long and robust enditic basipods, the fourth pair with proximal annulations and lamellae. The post-cephalothorax has six pairs of lamellate and fully annulated appendages which appear to be extensively modified basipods rather than exopods. The front part of the body bears a pair of stalked eyes with the first ommatidia preserved in a Burgess Shale arthropod, and a median ‘labral’ complex flanked by lobate projections with possible affinities to hemi-ellipsoid bodies. Waptia confirms the mandibulate affinity of hymenocarines, retrieved here as part of an expanded Pancrustacea, thereby providing a novel perspective on the evolutionary history of this hyperdiverse group. We construe that Waptia was an active swimming predator of soft prey items, using its anterior appendages for food capture and manipulation, and also potentially for clinging to epibenthic substrates.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.