A reduced description of exact coherent structures in the transition regime of plane parallel shear flows is developed, based on the Reynolds number scaling of streamwise-averaged (mean) and streamwise-varying (fluctuation) velocities observed in numerical simulations. The resulting system is characterized by an effective unit Reynolds number mean equation coupled to linear equations for the fluctuations, regularized by formally higher-order diffusion. Stationary coherent states are computed by solving the resulting equations simultaneously using a robust numerical algorithm developed for this purpose. The algorithm determines self-consistently the amplitude of the fluctuations for which the associated mean flow is just such that the fluctuations neither grow nor decay. The procedure is used to compute exact coherent states of a flow introduced by Drazin and Reid [Hydrodynamic Stability (Cambridge University Press, Cambridge, UK, 1981)] and studied by Waleffe [Phys. Fluids 9, 883 (1997)]: a linearly stable, plane parallel shear flow confined between stationary stress-free walls and driven by a sinusoidal body force. Numerical continuation of the lower-branch states to lower Reynolds numbers reveals the presence of a saddle node; the saddle node allows access to upper-branch states that are, like the lower-branch states, self-consistently described by the reduced equations. Both lower-and upper-branch states are characterized in detail.
Three-dimensional doubly diffusive convection in a closed vertically extended container driven by competing horizontal temperature and concentration gradients is studied by a combination of direct numerical simulation and linear stability analysis. No-slip boundary conditions are imposed on all six container walls. The buoyancy number $N$ is taken to be $-1$ to ensure the presence of a conduction state. The primary instability is subcritical and generates two families of spatially localized steady states known as convectons. The convectons bifurcate directly from the conduction state and are organized in a pair of primary branches that snake within a well-defined range of Rayleigh numbers as the convectons grow in length. Secondary instabilities generating twist result in secondary snaking branches of twisted convectons. These destabilize the primary convectons and are responsible for the absence of stable steady states, localized or otherwise, in the subcritical regime. Thus all initial conditions in this regime collapse to the conduction state. As a result, once the Rayleigh number for the primary instability of the conduction state is exceeded, the system exhibits an abrupt transition to large-amplitude relaxation oscillations resembling bursts with no hysteresis. These numerical results are confirmed here by determining the stability properties of both convecton types as well as the domain-filling states. The number of unstable modes of both primary and secondary convectons of different lengths follows a pattern that allows the prediction of their stability properties based on their length alone. The instability of the convectons also results in a dramatic change in the dynamics of the system outside the snaking region that arises when the twist instability operates on a time scale faster than the time scale on which new rolls are nucleated. The results obtained are expected to be applicable in various pattern-forming systems exhibiting localized structures, including convection and shear flows.
A reduced description of shear flows motivated by the Reynolds number scaling of lower-branch exact coherent states in plane Couette flow (Wang J, Gibson J and Waleffe F 2007 Phys. Rev. Lett. 98 204501) is constructed. Exact time-independent nonlinear solutions of the reduced equations corresponding to both lower and upper branch states are found for a sinusoidal, body-forced shear flow. The lower branch solution is characterized by fluctuations that vary slowly along the critical layer while the upper branch solutions display a bimodal structure and are more strongly focused on the critical layer. The reduced equations provide a rational framework for investigations of subcritical spatiotemporal patterns in parallel shear flows.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.