[1] We present characteristics of the statistical horizontal distribution of the O 2 infrared nightglow over most of the southern hemisphere observed with the VIRTIS instrument over a period spanning nearly 11 months of low solar activity. We show that the distribution is inhomogeneous with the regions of brightest emission reaching $3 MegaRayleighs (MR) located at low latitude near and dawnward of the midnight meridian. The hemispherically averaged nadir brightness is 1.3 MR, in very good agreement with earlier ground based observations. We show that the dayside supply of O atoms is sufficient to produce the observed global O 2 nightglow if approximately 50% of the dayside O production is carried to the nightside by the subsolar to antisolar global circulation. Limb profiles observed at northern mid-latitudes exhibit large intensity variations over short time periods. Calculations with a onedimensional chemical diffusive model produce an airglow peak at 96 km, in agreement with the limb observations. The atomic oxygen density derived from the best fits to O 2 airglow limb profiles reaches a maximum of 1.8-3.5 Â 10 11 cm À3 at 104 km.
[1] Limb observations with the SPICAM ultraviolet spectrometer on board the Mars Express orbiter revealed ultraviolet nightglow emission in the d (190-240 nm) and g (225-270 nm) bands of nitric oxide. This emission arises from radiative recombination between O( 3 P) and N( 4 S) atoms that are produced on the day side and form excited NO molecules on the night side. In this study, we analyze the night limb observations obtained during the MEX mission. In particular, we describe the variability of the emission brightness and its peak altitude. We examine possible correlations with latitude, local time, magnetic field strength or solar activity. We show that the altitude of maximum emission varies between 55 and 92 km while the brightness is in the range 0.2 to 10.5 kR. The total vertical emission rate ranges from 8 to 237 R with an average value of 36 ± 52 R. The observed topside scale height of the emission profile varies between 3.8 and 11.0 km, with a mean value of 6 ± 1.7 km. We use a chemical-diffusive atmospheric model where the eddy coefficient, whose value in the Mars thermosphere is uncertain, is a free parameter to match the observed peak altitude of the emission. The model solves the continuity equation for O( 3 P), N( 4 S), and NO using a finite volume method on a one-dimensional grid. We find that the downward flux of N atoms at 100 km varies by two orders of magnitude, ranging from 10 7 to 10 9 atoms cm À2 s À1 .
[1] Limb observations of the spectrum of nightglow emission in the d (190-240 nm) and g (225-270 nm) bands of nitric oxide have been made with the Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) ultraviolet spectrometer on board Venus Express. These emissions arise from radiative recombination between O( 3 P) and N( 4 S) atoms that are produced on the dayside and recombine to form excited NO molecules on the nightside. No other emission feature has been identified. The mean altitude of the emission layer is located at 113 km, but it varies between 95 and 132 km. The mean brightness of the total NO emission at the limb is 32 kR, but it is highly variable with limb intensities as large as 440 kR observed at low latitude and values below 5 kR seen at northern midlatitudes. No systematic dependence of the brightness with latitude is observed, but the mean altitude of the emission maximum statistically drops with increasing latitude between 6°and 72°N. Typical observed limb profiles are compared with simulations based on a one-dimensional chemical-diffusive atmospheric model. From model fits to observed profiles, we find that the downward flux of N atoms at 130 km typically varies between 1 Â 10 8 to 4 Â 10 9 atoms cm À2 s À1 . Comparisons of observed airglow topside scale heights with modeled profiles smoothed by the instrumental field of view indicate that the observations are compatible with a downward flow of O and N atoms by molecular and turbulent transport above the peak of emission. The K coefficient deduced from comparisons to limb profiles is less than that determined from the observations made with the Pioneer Venus UV spectrometer at low latitude during periods of high solar activity.
[1] Dayglow ultraviolet emissions of the CO Cameron bands and the CO 2 + doublet in the Martian atmosphere have been observed with the Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars on board the Mars Express spacecraft. A large amount of limb profiles has been obtained which makes it possible to analyze variability of the brightness as well as of the altitude of the emission peak. Focusing on one specific season (Ls = [90,180]°), we find that the average CO peak brightness is equal to 118 ± 33 kR, with an average peak altitude of 121.1 ± 6.5 km. Similarly, the CO 2 + emission shows a mean brightness of 21.6 ± 7.2 kR with a peak located at 119.1 ± 7.0 km. We show that the brightness intensity of the airglows is mainly controlled by the solar zenith angle and by solar activity. Moreover, during Martian summer of year 2005, an increase of the airglow peak altitude has been observed between Ls = 120°and 180°. We demonstrate that this variation is due to a change in the thermospheric local CO 2 density, in agreement with observations performed by stellar occultation. Using a Monte Carlo one-dimensional model, we also show that the main features of the emission profiles can be reproduced for the considered set of data. However, we find it necessary to scale the calculated intensities by a fixed factor.
[1] Two prominent features of the Venus nightside airglow are the nitric oxide d and g bands produced by radiative association of O and N atoms in the lower thermosphere and the O 2 infrared emission generated by three-body recombination of oxygen atoms in the upper mesosphere. The O 2 airglow has been observed from the ground, during the Cassini flyby, and with VIRTIS on board Venus Express. It now appears that the global structure of the two emissions shows some similarities, but the statistical location of the region of strongest emission is not coincident. The Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) ultraviolet spectrograph has collected a large number of spectra of the Venus nitric oxide nightside airglow. Visible and Infrared Thermal Imaging Spectrometer (VIRTIS) images have been obtained at the limb and in the nadir-viewing mode and have provided new information on the horizontal and vertical distribution of the emission. We present the first concurrent observations of the two emissions observed with Venus Express. We show that nadir observations generally indicate a low degree of correlation between the two emissions observed quasi-simultaneously at a common location. A statistical study of limb profiles indicates that the altitude and the brightness of the two airglow layers generally do not covary. We suggest that this lack of correlation is explained by the presence of strong horizontal winds in the mesosphere-thermosphere transition region. They carry the downflowing atoms over large distances in such a way that regions of enhanced NO emission generally do not coincide with zones of bright O 2 airglow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.