Article:Tsavdaridis, KD and Cedric, D (2011) Web buckling study of the behaviour and strength of perforated steel beams with different novel web opening shapes. Journal of Constructional Steel Research, 67 (10 ABSTRACTThis paper presents an experimental and analytical study on the behaviour of perforated steel beams with closely spaced web openings. Seven specimens including two typical cellular beams (i.e. circular web openings) and five perforated beams with novel web opening shapes were tested to investigate the failure mode and load strength of the web-post between two adjacent web openings. Fourteen numerical test specimens were developed and analysed by the finite element method and the results were compared with the full scale experiments. The effect of web opening spacing/web opening depth of web-posts was studied to investigate the effective strut action of the web-post buckling. The effect of the web opening depth/web thickness was also studied to investigate the stability (slenderness) of the web-post subjected to vertical shear load. Two hundred and twenty-fine elastic-plastic finite element analyses were then employed in a comprehensive parametric study to propose an empirical formula which predicts the ultimate vertical shear load strength of web-posts formed from the particular web opening shapes.Perforated beams with standard circular, hexagonal and elongated web openings are mostly used nowadays. Various non-standard web opening shapes are introduced through this paper. These new pioneering web opening shapes improve the structural performance of the perforated beams when examined under the webpost buckling failure mode. In addition, the manufacturing procedure of these non-standard web openings show great advantage in comparison with the manufacturing way of the more popular perforated beams with circular web openings (i.e. cellular beams).
The Vierendeel mechanism is always critical in perforated steel beams with single large web openings, where global shear forces and Vierendeel moments co-exist. Thus far, the main parameters that are known to affect the structural behavior of such beams are the depth of the web opening, the critical opening length of the top tee-section and the web opening area. A comprehensive Finite Element (FE) study of four sizes of perforated steel sections with three different sizes of eleven standard and novel non-standard web opening shapes was undertaken, and their primary structural characteristics presented in detail in order to provide a simple design method for general practice. The different geometric parameters were isolated and studied in order to understand the significance of their effects and in turn advance the knowledge on the performance of perforated steel beams.An elaborate FE model was established, with both material and geometrical non-linearity, allowing load redistribution across the web openings and formation of the Vierendeel mechanism. The reduction of the global shear capacities, due to incorporation of the local Vierendeel moments acting on the top and bottom tee-sections, was obtained directly from the FE analysis. Following that, a comparison of the global shear-moment (V/M) interaction curves of the steel sections with various web opening shapes and sizes was established and empirical generalized V/M interaction curves developed. Moreover, the accurate position of the plastic hinges was determined together with the critical opening length and the Vierendeel parameter.This work has now shown that the shape of the web opening can also significantly affect the structural behavior of perforated beams, as opposed to the equivalent rectangular shape predominately used so far. In addition, the effect of the position of the web opening along the length of the perforated beam was revealed. The importance of the parameters that affect the structural performance of such beams is illustrated. The thorough examination of the computational results has led to useful conclusions and an elliptical form of a web opening is proposed for further study. The outcome of this study is considered as being relevant for practical applications.
The shear transferring mechanisms of composite shallow cellular floor beams are different with the conventional headed shear studs, and have not been investigated previously. This paper presents the experimental and analytical studies of the shear transferring mechanisms with the aims to provide information on their shear resistance and behaviour. The composite shallow cellular floor beam is a new type of composite floor beam consists of an asymmetric steel section with circular web openings and concrete slabs incorporated between the top and bottom flange. The unique feature of the web openings allows tie-bars, building services and ducting to pass through the structural depth of the floor beam, creating an ultra-shallow floor beam structure. The shear connection of the composite shallow cellular floor beam are formed innovatively by the web openings, as the in-situ concrete passes through the web openings may or may not include the tie-bars or ducting to transfer the longitudinal shear force. In total, 24 push-out tests were carried out to investigate the shear connection under the direct shear force. The effect of loading cycles on the shear connection was also investigated. The failure mechanisms of the shear connection were extensively studied, which had led to the development of a calculation method of shear resistance for the shear connection.
A new study was carried out and presented herein, on the optimisation of novel elliptically-based web opening shapes which enhance the structural behaviour of the perforated beams as well as lead to economic design in terms of both manufacture and usage. The finite element (FE) model used in the study was validated against experimental work conducted by the authors and the results of the comprehensive study are presented in this research paper. For ease of comparison, the yield patterns and deflected shapes of the perforated beams are presented at three 'characteristic' load level points. Finally, shear-moment interaction FEM curves are presented for six novel web opening shapes to allow for easy use of the empirical design formulas that have previously been proposed by the authors in a complementary research paper. An overall study of many standard and non-standard web opening shapes, it was shown that perforated beams with vertical and inclined classic elliptical web openings (3:4 width to depth ratio) behave more effectively compared to perforated beams with conventional circular and hexagonal web openings, mainly in terms of stress distribution and local deflection. Therefore, perforated steel beams with large novel elliptically-based web openings with short critical opening length at the top and bottom tee-section as well as straight-line edges are presented for first time and examined in the current research programme. To define the various web opening configurations with different web opening areas, two main parameters are varied: the angle (θ) of the straight lines and the radius (R) of the semicircles at the top and bottom tee-sections. Four θ angles (10 o , 20 o , 30 o and 40 o) as well as four R radii (0.15d o , 0.2d o , 0.25d o and 0.3d o) and their combinations were modelled for now. The elliptical form of these web openings was investigated in both the vertical and inclined configurations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.