Cells are highly asymmetrical, a feature that relies on the sorting of molecular constituents, including proteins, lipids, and nucleic acids, to distinct subcellular locales. The localization of RNA molecules is an important layer of gene regulation required to modulate localized cellular activities, although its global prevalence remains unclear. We combine biochemical cell fractionation with RNA-sequencing (CeFra-seq) analysis to assess the prevalence and conservation of RNA asymmetric distribution on a transcriptome-wide scale in and human cells. This approach reveals that the majority (∼80%) of cellular RNA species are asymmetrically distributed, whether considering coding or noncoding transcript populations, in patterns that are broadly conserved evolutionarily. Notably, a large number of and human long noncoding RNAs and circular RNAs display enriched levels within specific cytoplasmic compartments, suggesting that these RNAs fulfill extra-nuclear functions. Moreover, fraction-specific mRNA populations exhibit distinctive sequence characteristics. Comparative analysis of mRNA fractionation profiles with that of their encoded proteins reveals a general lack of correlation in subcellular distribution, marked by strong cases of asymmetry. However, coincident distribution profiles are observed for mRNA/protein pairs related to a variety of functional protein modules, suggesting complex regulatory inputs of RNA localization to cellular organization.
A precise mapping of pathogen-host interactions is essential for comprehensive understanding of the processes of infection and pathogenesis. The most frequently used techniques for interactomics are the yeast two-hybrid binary methodologies, which do not recapitulate the pathogen life cycle, and the tandem affinity purification mass spectrometry co-complex methodologies, which cannot distinguish direct from indirect interactions. New technologies are thus needed to improve the mapping of pathogen-host interactions. In the current study, we detected binary interactions between influenza A virus polymerase and host proteins during the course of an actual viral infection, using a new strategy based on transcomplementation of the Gluc1 and Gluc2 fragments of Gaussia princeps luciferase. Infectious recombinant influenza viruses that encode a Gluc1-tagged polymerase subunit were engineered to infect cultured cells transiently expressing a selected set of Gluc2-tagged cellular proteins involved in nucleocytoplasmic trafficking pathways. A random set and a literature-curated set of Gluc2-tagged cellular proteins were tested in parallel. Our assay allowed the sensitive and accurate recovery of previously described interactions, and it revealed 30% of positive, novel viral-host protein-protein interactions within the exploratory set. In addition to cellular proteins involved in the nuclear import pathway, components of the nuclear pore complex such as NUP62 and mRNA export factors such as NXF1, RMB15B, and DDX19B were identified for the first time as interactors of the viral polymerase. Gene silencing experiments further showed that NUP62 is required for efficient viral replication. Our findings give new insights regarding the subversion of host nucleocytoplasmic trafficking pathways by influenza A viruses. They also demonstrate the potential of our infectious protein complementation assay for high-throughput exploration of influenza virus interactomics in infected cells. With more infectious reverse genetics systems becoming available, this strategy should be widely applicable to numerous pathogens. Molecular & Cellular
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.