Automatic fact-checking is an important challenge nowadays since anyone can write about anything and spread it in social media, no matter the information quality. In this paper, we revisit the information check-worthiness problem and propose a method that combines the "information nutritional label" features with POS-tags and word-embedding representations. To predict the information check-worthy claim, we train a machine learning model based on these features. We experiment and evaluate the proposed approach on the CheckThat! CLEF 2018 collection. The experimental result shows that our model that combines information nutritional label and word-embedding features outperforms the baselines and the official participants' runs of CheckThat! 2018 challenge.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.