Conservation of wildlife populations requires extensive knowledge of their habitat requirements, efficient methods to evaluate habitat quality, and an understanding of the value of fragments and edges. Kibale National Park, Uganda has areas that differ in the densities of 2 species of frugivorous monkeys-Cercopithecus mitis and Lophocebus albigena-including one on an edge and forest fragments outside the park that lack both species. We compared the basal area densities of important food trees with primate densities. The density of Cercopithecus mitis correlates most strongly with the basal area density of all types of food trees combined. The density of Lophocebus albigena does not correlate with the basal area densities of any category of food trees or with fruit availability. An index of their density-number of groups seen per km walked-correlates to fruit availability but with marginal significance. Lack of a relationship between the basal area densities of food trees and density of Lophocebus albigena may be the result of a mismatch in scale between the forest area measured and their large home ranges. We compared the unused area of forest to the other areas of the forest and the fragments and found it had higher basal area densities in all food tree categories for both species than the fragments and lower basal area densities of
There are only two kinds of organisms on the Earth: prokaryotes and eukaryotes. Although eukaryotes are considered to have evolved from prokaryotes, there were no previously known intermediate forms between them. The differences in their cellular structures are so vast that the problem of how eukaryotes could have evolved from prokaryotes is one of the greatest enigmas in biology. Here, we report a unique organism with cellular structures appearing to have intermediate features between prokaryotes and eukaryotes, which was discovered in the deep sea off the coast of Japan using electron microscopy and structome analysis. The organism was 10 µm long and 3 µm in diameter, having >100 times the volume of Escherichia coli. It had a large 'nucleoid', consisting of naked DNA fibers, with a single nucleoid membrane and endosymbionts that resemble bacteria, but no mitochondria. Because this organism appears to be a life form distinct from both prokaryotes and eukaryotes but similar to eukaryotes, we named this unique microorganism the 'Myojin parakaryote' with the scientific name of Parakaryon myojinensis ('next to (eu)karyote from Myojin') after the discovery location and its intermediate morphology. The existence of this organism is an indication of a potential evolutionary path between prokaryotes and eukaryotes.
The extinction of the Irish elk Megaloceros giganteus has traditionally thought to have been caused in one way or another by the enormous antlers of the males. Recently, a popular hypothesis for the Irish elk extinction has been their inability to cope with the nutritional demands of growing such large antlers during worsening habitat conditions. However, this hypothesis is weakened by several previously unaddressed and biologically unreasonable assumptions. We discuss these assumptions and conclude that, because antler mass is expected to have been evolutionarily labile, nutritionally sensitive, and ontogenetically variable and male mortality is expected to have had limited impact on population growth, the large antlers of Irish elk probably had little to do with the extinction. We focus on the reproductive energetics of females as a possible contributor to extinction, and model the nutritional demands of producing precocial cursorial young. Our model shows the reproductive output of females being reduced by 50% due to changes in the length of the growing season at the end of the Pleistocene when most populations of Irish elk went extinct. The model was validated with parameters from the extant wapiti, which was predicted to maintain high levels of reproduction during the Pleistocene climatic deterioration. Thus, nutritional stress on reproductive females is likely to have contributed more to the Irish elk extinction than nutritional stress on large-antlered males.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.