SAT is probably one of the most-studied constraint satisfaction problems. In this paper, a new hybrid technique based on local search is introduced in order to approximate and extract minimally unsatisfiable subformulas (in short, MUSes) of unsatisfiable SAT instances. It is based on an original counting heuristic grafted to a local search algorithm, which explores the neighborhood of the current interpretation in an original manner, making use of a critical clause concept. Intuitively, a critical clause is a falsified clause that becomes true thanks to a local search flip only when some other clauses become f alse at the same time. In the paper, the critical clause concept is investigated. It is shown to be the cornerstone of the efficiency of our approach, which outperforms competing ones to compute MUSes, inconsistent covers and sets of MUSes, most of the time.
In this paper, a new complete technique to compute Maximal Satisfiable Subsets (MSSes) and Minimally Unsatisfiable Subformulas (MUSes) of sets of Boolean clauses is introduced. The approach improves the currently most efficient complete technique in several ways. It makes use of the powerful concept of critical clause and of a computationally inexpensive local search oracle to boost an exhaustive algorithm proposed by Liffiton and Sakallah. These features can allow exponential efficiency gains to be obtained. Accordingly, experimental studies show that this new approach outperforms the best current existing exhaustive ones.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.