T he Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission landed on Mars on 26 November 2018 in Elysium Planitia 1,2 , 38 years after the end of Viking 2 lander operations. At the time, Viking's seismometer 3 did not succeed in making any convincing Marsquake detections, due to its on-deck installation and high wind sensitivity. InSight therefore provides the first direct geophysical in situ investigations of Mars's interior structure by seismology 1,4. The Seismic Experiment for Interior Structure (SEIS) 5 monitors the ground acceleration with six axes: three Very Broad Band (VBB) oblique axes, sensitive to frequencies from tidal up to 10 Hz, and one vertical and two horizontal Short Period (SP) axes, covering frequencies from ~0.1 Hz to 50 Hz. SEIS is complemented by the APSS experiment 6 (InSight Auxiliary Payload Sensor Suite), which includes pressure and TWINS (Temperature and Winds for InSight) sensors and a magnetometer. These sensors monitor the atmospheric sources of seismic noise and signals 7. After seven sols (Martian days) of SP on-deck operation, with seismic noise comparable to that of Viking 3 , InSight's robotic arm 8 placed SEIS on the ground 22 sols after landing, at a location selected through analysis of InSight's imaging data 9. After levelling and noise assessment, the Wind and Thermal Shield was deployed on sol 66 (2 February 2019). A few days later, all six axes started continuous seismic recording, at 20 samples per second (sps) for VBBs and 100 sps for SPs. After onboard decimation, continuous records at rates from 2 to 20 sps and event records 5 at 100 sps are transmitted. Several layers of thermal protection and very low self-noise enable the SEIS VBB sensors to record the daily variation of the
Clues to a planet’s geologic history are contained in its interior structure, particularly its core. We detected reflections of seismic waves from the core-mantle boundary of Mars using InSight seismic data and inverted these together with geodetic data to constrain the radius of the liquid metal core to 1830 ± 40 kilometers. The large core implies a martian mantle mineralogically similar to the terrestrial upper mantle and transition zone but differing from Earth by not having a bridgmanite-dominated lower mantle. We inferred a mean core density of 5.7 to 6.3 grams per cubic centimeter, which requires a substantial complement of light elements dissolved in the iron-nickel core. The seismic core shadow as seen from InSight’s location covers half the surface of Mars, including the majority of potentially active regions—e.g., Tharsis—possibly limiting the number of detectable marsquakes.
Although not the prime focus of the InSight mission, the near-surface geology and physical properties investigations provide critical information for both placing the instruments (seismometer and heat flow probe with mole) on the surface and for understanding the The InSight Mission to Mars II Edited by William B.
On November 26, 2018, NASA's InSight lander successfully touched down on the Martian surface in Elysium Planitia (Figure 1). The scientific goals of InSight are to determine the interior structure, composition, and thermal state of Mars, as well as to document the present-day seismicity and impact rate. To achieve these goals, InSight carried the seismometer package SEIS (Seismic Experiment for Interior Structure) to Mars including a very broadband (VBB) and short period (SP) instrument that cover the seismic bandwidth 0.01-5 Hz (Lognonné et al., 2019). These two instruments are used to locate and classify Marsquakes, to
Orbital and surface observations can shed light on the internal structure of Mars. NASA’s InSight mission allows mapping the shallow subsurface of Elysium Planitia using seismic data. In this work, we apply a classical seismological technique of inverting Rayleigh wave ellipticity curves extracted from ambient seismic vibrations to resolve, for the first time on Mars, the shallow subsurface to around 200 m depth. While our seismic velocity model is largely consistent with the expected layered subsurface consisting of a thin regolith layer above stacks of lava flows, we find a seismic low-velocity zone at about 30 to 75 m depth that we interpret as a sedimentary layer sandwiched somewhere within the underlying Hesperian and Amazonian aged basalt layers. A prominent amplitude peak observed in the seismic data at 2.4 Hz is interpreted as an Airy phase related to surface wave energy trapped in this local low-velocity channel.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.