The need for renewable alternatives for fossil-based aromatic material constituents is evident for a more sustainable society. Lignin is the largest source of naturally occurring aromatic compounds but has mainly been considered as waste material or energy source in the pulp and paper industry. Developments in extracting lignin from these processes provide a large source for renewable aromatic structures to be used in various applications. Producing thermosets out of lignin is a very promising route to utilize this raw material toward, for example, composite application. The buildup of the molecular network based on oligomeric lignin segments will be different from traditional thermoset analogues, where the constituents often are smaller molecules, and will have an effect on the material properties. In this work LignoBoost Kraft lignin is refined, chemically modified, and used to produce freestanding thermosets with different architectures and properties. These different thermosets are evaluated, and the possibilities to tailor the material properties through work-up and modification are demonstrated. Morphological studies on the formed thermosets using X-ray scattering show systematic differences in molecular stacking and aggregate sizes.
In light of the energy transition, it becomes a widespread solution to decentralize and to decarbonize energy systems. However, limited transformer capacities are a hurdle for large-scale integration of solar energy in the electricity grid. The aim of this paper is to define a novel concept of renewable energy hubs and to optimize its design strategy at the district scale in an appropriate computational time. To overcome runtime issues, the Dantzig-Wolfe decomposition method is applied to a mixed-integer linear programming framework of the renewable energy hub. Distributed energy units as well as centralized district units are considered. In addition, a method to perform multi-objective optimization as well as respecting district grid constraints in the decomposition algorithm is presented. The decomposed formulation leads to a convergence below 20 min for 31 buildings and a mip gap lower than 0.2%. The centralized design enhances the photovoltaic penetration in the energy mix and reduces the global warming potential and necessary curtailment in order to respect transformer capacity constraints.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.