Existing objective speech-intelligibility measures are suitable for several types of degradation, however, it turns out that they are less appropriate for methods where noisy speech is processed by a timefrequency (TF) weighting, e.g., noise reduction and speech separation. In this paper, we present an objective intelligibility measure, which shows high correlation (rho=0.95) with the intelligibility of both noisy, and TF-weighted noisy speech. The proposed method shows significantly better performance than three other, more sophisticated, objective measures. Furthermore, it is based on an intermediate intelligibility measure for short-time (approximately 400 ms) TF-regions, and uses a simple DFT-based TF-decomposition. In addition, a free Matlab implementation is provided.Index Terms-intelligibility prediction, speech enhancement, noisy speech.
In this letter the focus is on linear filtering of speech before degradation due to additive background noise. The goal is to design the filter such that the speech intelligibility index (SII) is maximized when the speech is played back in a known noisy environment. Moreover, a power constraint is taken into account to prevent uncomfortable playback levels and deal with loudspeaker constraints. Previous methods use linear approximations of the SII in order to find a closed-form solution. However, as we show, these linear approximations introduce errors in low SNR regions and are therefore suboptimal. In this work we propose a nonlinear approximation of the SII which is accurate for all SNRs. Experiments show large intelligibility improvements with the proposed method over the unprocessed noisy speech and better performance than one state-of-the art method.Index Terms-Near-end enhancement, speech enhancement, speech intelligibility, speech intelligibility index.
This paper deals with the problem of predicting the average intelligibility of noisy and potentially processed speech signals, as observed by a group of normal hearing listeners. We propose a model which performs this prediction based on the hypothesis that intelligibility is monotonically related to the mutual information between critical-band amplitude envelopes of the clean signal and the corresponding noisy/processed signal. The resulting intelligibility predictor turns out to be a simple function of the mean-square error (mse) that arises when estimating a clean critical-band amplitude using a minimum mean-square error (mmse) estimator based on the noisy/processed amplitude. The proposed model predicts that speech intelligibility cannot be improved by any processing of noisy critical-band amplitudes. Furthermore, the proposed intelligibility predictor performs well () in predicting the intelligibility of speech signals contaminated by additive noise and potentially non-linearly processed using time-frequency weighting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.