This paper presents new ideas on the Early Palaeozoic geography and tectonic history of the Iapetus Ocean involved in the formation of the northern Appalachian-British Caledonide Orogen. Based on an extensive compilation of data along the length of the orogen, particularly using well-preserved relationships in Newfoundland as a template, we show that this orogen may have experienced a very complicated tectonic evolution that resembles parts of the present west and southwest Pacific Ocean in its tectonic complexities. Closure of the west and southwest Pacific Ocean by forward modelling of the oblique collision between Australia and Asia shows that transpressional flattening and non-coaxial strain during terminal collision may impose a deceptively simple linearity and zonation to the resultant orogen and, hence, may produce a linear orogen like the Appalachian-Caledonian Belt. Oceanic elements may preserve along-strike coherency for up to several thousands of kilometres, but excision and strike-slip duplication, as a result of oblique convergence and terminal collisional processes, is expected to obscure elucidation of the intricacies of their accretion and collisional processes. Applying these lessons to the northern Appalachian-Caledonian belt, we rely principally on critical relationships preserved in different parts of the orogen to constrain tectonic models of kinematically-related rock assemblages. The rift-drift transition, and opening of the Iapetus Ocean took place between c. 590–550 Ma. Opening of Iapetus was temporally and spatially related to final closure of the Brazilide Ocean and amalgamation of Gondwanaland. During the Early Ordovician, the Laurentian margin experienced obduction of young, supra-subduction-zone oceanic lithosphere along the length of the northern Appalachian-British Caledonian Belt. Remnants of this lithosphere are best preserved in western Newfoundland and are referred to as the Baie Verte Oceanic Tract. Convergence between Laurentia and the Baie Verte Oceanic Tract was probably dextrally oblique. Slab break-off and a subsequent subduction polarity reversal produced a continental magmatic arc, the Notre Dame Arc, on the edge of the composite Laurentian margin. The Notre Dame Arc was mainly active during the late Tremadoc-Caradoc interval and was flanked by a southeast- or south-facing accretionary complex, the Annieopsquotch Accretionary Tract. Southerly drift of Laurentia to intermediate latitudes of c. 20–25°S was associated with the compressive (Andean) nature of the arc and the accompanying backthrusting of the already-accreted Baie Verte Oceanic Tract further onto the Laurentian foreland. Equivalents of the Notre Dame Arc and its forearc elements in the British Isles have been preserved as independent slices in the Midland Valley and possibly the Northern Belt of the Southern Uplands. During the late Tremadoc ( c. 485 Ma), the passive margin on the eastern side of Iapetus also experienced obduction of primitive oceanic arc lithosphere. This arc is referred to as the Penobscot Arc. The eastern passive margin was built upon a Gondwanan fragment (Ganderia) that rifted off Amazonia during the Early Ordovician and probably travelled together with the Avalonian terranes as one microcontinent. The departure of Ganderia and Avalonia from Gondwana opened the Rheic Ocean. Equivalents of the Penobscot Arc may be preserved in New Brunswick and Maine, Leinster in eastern Ireland, and Anglesey in Wales. An arc-polarity reversal along the Ganderian margin after the soft Penobscot collision produced a new arc: the west-facing Popelogan-Victoria Arc, which probably formed a continuous arc system with the Bronson Hill Arc in New England. The Popelogan-Victoria Arc transgressed from a continental to an oceanic substrate from southern to northeastern Newfoundland. Rapid roll-back rifted the Popelogan-Victoria Arc away from Ganderia during the late Arenig ( c. 473 Ma) and opened a wide back-arc basin; the Tetagouche-Exploits back-arc basin. The Popelogan-Victoria Arc was accreted sinistrally oblique to the Notre Dame Arc and, by implication, Laurentia during the Late Ordovician. After accretion, the northwestward-dipping subduction zone stepped eastwards into the Tetagouche-Exploits back-arc basin. Equivalents of the Popelogan-Victoria Arc in the British Isles may be preserved as small remnants in the Longford Down Inlier in Ireland. The Longford Down Arc is not preserved in Scotland, although its presence has been inferred there on the tenuous basis of arc detritus. The suture between the Notre Dame Arc and the Popelogan-Victoria-Longford Down Arc system is the Red Indian Line in the Northern Appalachians, but in the British Isles the position is not clear. The fault-bounded Grangegeeth Arc terrane in eastern Ireland, immediately to the south of the Longford Down inlier, may be a displaced piece of the Popelogan-Victoria-Longford Down Arc system. Diachronous closure of the Tetagouche-Exploits basin during the Ashgill to the Wenlock finally caused the collision between Ganderia/Avalonia and Laurentia, whereas the Lake District Arc is related to an earlier closure of the Tornquist Sea between Baltica and Avalonia. After arrival of Avalonia at the Laurentian margin, continuous, dextral oblique convergence between Gondwana and Laurentia was accommodated by another northwest-dipping subduction zone, this time in the Rheic Ocean. The Acadian orogeny in both North America and the British Isles occurred in the Early to Mid-Devonian and is probably related to the collision of Gondwana and/or peri-Gondwanan elements (Meguma, Armorica etc.) with the northern continents.
During the Early to Middle Palaeozoic, prior to formation of Pangaea, the Canadian and adjacent New England Appalachians evolved as an accretionary orogen. Episodic orogenesis mainly resulted from accretion of four microcontinents or crustal ribbons: Dashwoods, Ganderia, Avalonia and Meguma. Dashwoods is peri-Laurentian, whereas Ganderia, Avalonia and Meguma have Gondwanan provenance. Accretion led to a progressive eastwards (present co-ordinates) migration of the onset of collision-related deformation, metamorphism and magmatism. Voluminous, syn-collisional felsic granitoid-dominated pulses are explained as products of slab-breakoff rather than contemporaneous slab subduction. The four phases of orogenesis associated with accretion of these microcontinents are known as the Taconic, Salinic, Acadian and Neoacadian orogenies, respectively. The Ordovician Taconic orogeny was a composite event comprising three different phases, due to involvement of three peri-Laurentian oceanic and continental terranes. The Taconic orogeny was terminated with an arc-arc collision due to the docking of the active leading edge of Ganderia, the Popelogan -Victoria arc, to an active Laurentian margin (Red Indian Lake arc) during the Late Ordovician (460-450 Ma).The Salinic orogeny was due to Late Ordovician-Early Silurian (450-423 Ma) closure of the Tetagouche-Exploits backarc basin, which separated the active leading edge of Ganderia from its trailing passive edge, the Gander margin. Salinic closure was initiated following accretion of the active leading edge of Ganderia to Laurentia and stepping back of the west-directed subduction zone behind the accreted Popelogan -Victoria arc. The Salinic orogeny was immediately followed by Late Silurian-Early Devonian accretion of Avalonia (421-400 Ma) and Middle DevonianEarly Carboniferous accretion of Meguma (395-350 Ma), which led to the Acadian and Neoacadian orogenies, respectively. Each accretion took place after stepping-back of the west-dipping subduction zone behind an earlier accreted crustal ribbon, which led to progressive outboard growth of Laurentia. The Acadian orogeny was characterized by a flat-slab setting after the onset of collision, which coincided with rapid southerly palaeolatitudinal motion of Laurentia. Acadian orogenesis preferentially started in the hot and hence, weak backarc region. Subsequently it was characterized by a time-transgressive, hinterland migrating fold-and-thrust belt antithetic to the west-dipping A-subduction zone. The Acadian deformation front appears to have been closely tracked in space by migration of the Acadian magmatic front. Syn-orogenic, Acadian magmatism is interpreted to mainly represent partial melting of subducted fore-arc material and pockets of fluidfluxed asthenosphere above the flat-slab, in areas where Ganderian's lithosphere was thinned by extension during Silurian subduction of the Acadian oceanic slab. Final Acadian magmatism from 395-c. 375 Ma is tentatively attributed to slab-breakoff.Neoacadian accretion of Meguma was accommoda...
Detrital zircon ages were determined for conglomerate and sandstone samples from six fault-bounded belts in New Brunswick and coastal Maine. Formations sampled included the Martinon (Brookville belt), Flagg Cove (Grand Manan Island belt), Matthews Lake (New River belt), Ellsworth (Ellsworth belt), Calais (St. Croix belt), and Baskahegan Lake (Miramichi belt). Their maximum age of deposition is based on the youngest detrital zircon population and minimum age of deposition based on stratigraphic, paleontological, and cross-cutting intrusive relationships. The determined range of depositional ages are: Martinon between 602 ± 8 (youngest zircons) and 546 ± 2 Ma (age of cross-cutting intrusion); Flagg Cove between 574 ± 7 (youngest zircons) and 535 ± 3 Ma (age of cross-cutting intrusion); Matthews Lake between 539 ± 5 (youngest zircons) and 514 ± 2 Ma (age of overlying volcanic rocks); Ellsworth between 507 ± 6 (youngest zircons) and 504 ± 3 Ma (age of overlying volcanic rocks); Calais between 510 ± 8 (youngest zircons) and 479 ± 2 Ma (graptolite zone); and Baskahegan Lake between 525 ± 6 (youngest zircons) and 488 ± 2 Ma (graptolite zone).All samples are dominated by Neoproterozoic (Gondwanan) zircon populations. The Early Paleozoic Matthews Lake, Ellsworth, and Calais formations contain main population peaks at 539 ± 5 Ma, 545 ± 4 Ma, and 556 ± 7 Ma, respectively, consistent with derivation mainly from magmatic rocks of the Brookville, Grand Manan Island, and/or New River belts, previously dated at ~553 to ~528 Ma. In contrast, the main peak in the Early Paleozoic Baskahegan Lake Formation is older at 585 ± 5 Ma. The main peak in the Neoproterozoic to Early Cambrian Flagg Cove Formation is at 611 ± 7 Ma with a secondary peak at 574 ± 7 Ma; the former was likely derived from locally exposed igneous units dated at ~618 to ~611 Ma. The Neoproterozoic Martinon Formation exhibits dominant peaks at 674 ± 8 Ma and 635 ± 4 Ma. Ganderian basement gneiss dated at ~675 Ma and intruded by plutonic rocks dated at ~584 Ma in the Hermitage Flexure of Newfoundland are possible sources for these older zircon components in the Martinon and Baskahegan Lake formations. Plutonic rocks in the New River belt dated at ~629 to ~622 Ma may be the source of the younger component in the Martinon Formation.The samples also contain a small number of Mesoproterozoic, Paleoproterozoic, and Archean zircon grains, the latter as old as 3.23 Ga. The presence of zircons in the range 1.07 to 1.61 Ga is consistent with an origin along the periGondwanan margin of Amazonia rather than West Africa. The general similarity of zircon provenance for samples from New Brunswick and coastal Maine suggests that all the Ganderian belts were part of a single microcontinent rifted from the Amazonian craton.The Grand Manan Island and New River belts both record two distinct periods of Neoproterozoic arc magmatism (~629 to ~611 Ma and at ~553 to ~535 Ma) whereas the Brookville belt experienced only a single period of arc magmatism lasting from ~553 to ~528 Ma. ...
The Brunswick subduction complex in the New Brunswick part of the Canadian Appalachians records the Late Ordovician to Late Silurian collision between Laurentia and the Gander margin of Avalon. The Brunswick complex is anomalously well preserved compared with equivalent rocks and structures elsewhere owing to its unique position in the deepest part of the Quebec reentrant of the Laurentian margin. This part of the margin experienced less underthrusting and exhumation and overprinting by orogen-parallel faulting than the adjacent promontories where collision started earlier. The early, southeast to east vetgent thrust-related structures represent a progressive D 1 deformation that formed in response to northwestward subduction of the previously extended Gander margin and subsequent tectonic unroofing of the subduction complex. The original, shallow northwestward dipping envelope to S 1 was deformed in the Late Silurian by D 2 upright folds and associated shear zones into a steep belt during terminal collision. The D 2 structures probably formed in response to sinistral transpression. Together, D 1 and D 2 indicate that convergence was oblique and sinistral. Most rocks incorporated in the subduction complex formed in the Tetagouche back arc basin that evolved from rifting of an Arenig magmatic arc built on the Gander margin into a wide marginal basin. Subduction was initiated in the Late Ordovician (=455 Ma) in the back arc basin following collision of the Middle Ordovician Popelogan arc with Laurentia in the Caradoc, shortly after its opening in the late Arenig (--473 Ma). The closure history of the Iapetus Ocean involved more than one subduction zone and arc-continent collision and rivals the southwestern Pacific Ocean in its complexities. IntroductionAlthough it is generally accepted that plate tectonic processes were responsible for the formation of the Appalachian-Caledonian Orogen, few subduction or accretionary complexes have been identified or documented. The ophiolitic melanges in western Newfoundland [e.g., Williams, 1975Williams, , 1977 are the remnants of a westward facing subduction complex that records the oblique collision between the Notre Dame arc (approximately the western part of Dunnage bounded by the Red Indian Line (RIL) to the east Paper number 93TC03604. 0278-7407/94/93TC-03604510.00 in inset of Figure 1) and Laurentia in the Early to Middle Ordovician [Cawood and Suhr, 1992]. Sparce Laurentian fossils in Early to Middle Ordovician sedimentary rocks are mixed with volcanic rocks of the Notre Dame arc, whereas peri-Gondwanan faunas (trilobites and brachiopods) occur in Middle Ordovician sediments that overstep the Early Ordovician ophiolites in the eastern part of the Dunnage Zone (Exploits Subzone of Williams et al. [1988]) and rocks of the Gander Zone [Nowlan and Thurlow, 1984; Neuman, 1984; van Staal and Williams, 1991; Williams et al., 1992]. The volcanic rocks of the Notre Dame arc, in contrast to coeval arc volcanic rocks occurring in the Exploits Subzone (east of RIL in inset of Figur...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.