With multi-foci laser cutting technology for sapphire wafer separation, the entire cross-section is generally scanned with single or multiple passes. This investigation proposes a new separation technique through partial thickness scanning. The energy effectivity and efficiency of the picosecond laser were enhanced through a two-zone partial thickness scanning by exploiting the internal reflection at the rough exit surface. Each zone spanned only one-third thickness of the cross-section, and only two out of three zones were scanned consecutively. A laser beam of 0.57 W and 50 kHz pulse repetition rate was split into 9 foci, each with a 2.20 μm calculated focused spot diameter. By only scanning the top two-thirds sample thickness, first its middle section then upper section, a cleavable sample could result. This was achieved with the lowest energy deposition at the fastest scanning speed of 10 mm/s investigated. Although with partial thickness scanning only, counter intuitively, the cleaved sample had a previously unattained uniform roughened sidewall profile over the entire thickness. This is a desirable outcome in LED manufacturing. As such, this proposed scheme could attain a cleavable sample with the desired uniformly roughened sidewall profile with less energy usage and faster scanning speed.
The multi-foci division of through thickness nonlinear pulse energy absorption on ultrashort pulse laser singulation of single side polished sapphire wafers has been investigated. Firstly, it disclosed the enhancement of energy absorption by the total internal reflection of the laser beam exiting from an unpolished rough surface. Secondly, by optimizing energy distribution between foci and their proximity, favorable multi-foci energy absorption was induced. Lastly, for effective nonlinear energy absorption for wafer separation, it highlighted the importance of high laser pulse energy fluence at low pulse repetition rates with optimized energy distribution, and the inadequacy of increasing energy deposition through reducing scanning speed alone. This study concluded that for effective wafer separation, despite the lower pulse energy per focus, energy should be divided over more foci with closer spatial proximity. Once the power density per pulse per focus reached a threshold in the order of 1012 W/cm2, with approximately 15 μm between two adjacent foci, wafer could be separated with foci evenly distributed over the entire wafer thickness. When the foci spacing reduced to 5 μm, wafer separation could be achieved with pulse energy concentrated only at foci distributed over only the upper or middle one-third wafer thickness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.