We carry out the complete group classification of the class of (1+1)-dimensional linear Schrödinger equations with complex-valued potentials. After introducing the notion of uniformly semi-normalized classes of differential equations, we compute the equivalence groupoid of the class under study and show that it is uniformly semi-normalized. More specifically, each admissible transformation in the class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of this class. This allows us to apply the new version of the algebraic method based on uniform semi-normalization and reduce the group classification of the class under study to the classification of low-dimensional appropriate subalgebras of the associated equivalence algebra. The partition into classification cases involves two integers that characterize Lie symmetry extensions and are invariant with respect to equivalence transformations.
Abstract. We describe admissible point transformations in the class of (1+2)-dimensional linear Schrödinger equations with complex potentials. We prove that any point transformation connecting two equations from this class is the composition of a linear superposition transformation of the corresponding initial equation and an equivalence transformation of the class. This shows that the class under study is semi-normalized.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.